Prospectivity maps for polymetallic skarn and orogenic gold mineralization in the Rio Piranhas-Seridó Domain, Borborema Province (NE Brazil): An aid to exploration targeting
Main Article Content
Abstract
In this study, predictive mineral prospectivity modelling (MPM) was applied to the Bodó, Serra da Umburana, Currais Novos–Santa Luzia, and Caicó–São Fernando–Jucurutu areas of the Seridó Mineral Province, Borborema Province, Northeast Brazil. The MPM was designed to target tungsten (W), molybdenum (Mo), gold (Au), and copper (Cu) mineralization associated with structurally controlled polymetallic skarn and orogenic gold deposits. The predictive models were developed through the integration of geological, geochemical, and geophysical data using the Multiclass Index Overlay (MIO) methodology. Thematic maps with different prospectivity ranges were generated and validated through cumulative curves relating predictive indices to the spatial distribution of the known mineral occurrences. The results demonstrated high model efficiency, with 62% to 88% of the occurrences concentrated in areas of high to very high prospectivity, representing 5% to 25% of the total area of each map. The high prospectivity areas include both known mineralized trends as well as areas yet to be investigated. As such, our MPM results not only confirm the potential of the known mining districts but also present new research and exploration frontiers. Geochemical signatures extracted through factor analysis (FA) revealed robust multielement patterns that support the skarn-type mineralization models. Mineralogical and lithogeochemical data from samples of mineralized zones and/or panned concentrates from prospective targets reinforce the polymetallic nature (W-Mo-Au-Cu) typical of skarn deposits in the study areas. Based on the results obtained from the validation of the prospectivity models, it is concluded that the integrated, mineral systems-based approach is effective in guiding mineral exploration in geologically complex terrain. The predictive maps constitute strategic tools that help reduce uncertainty associated with exploration targeting and attract investment to the region, which is timely given the growing global demand for critical metals.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
The papers are published in the open access format, being freely available to any user, under a CC-BY Creative Commons license.
By submitting this manuscript for evaluation, the authors are aware of the CC-BY Creative Commons license. In the case of manuscript approval, the author responsible for the manuscript (corresponding author), hereinafter referred to as CEDENTE (ASSIGNOR), hereby assigns and transfers to CPRM-Serviço Geológico do Brasil, holder of the JGSB, free of charge, on his behalf and on behalf from all co-authors, the right of the first publication. This includes the rights of editing, publication, translation into another language and reproduction by any process, worldwide, today and in the future.
After the first publication by the JGSB, authors hold the copyright without restrictions and are allowed to disclose and distribute their work through personal website pages and institutional repositories.
At the same time, the ASSIGNOR declares that the content of the manuscript is of sole responsibility of the authors and that this content does not infringe the copyrights and/or other property rights of third parties, that is, that any contents of the manuscript and its attachments, if taken from other publications, are duly referenced and, when necessary, the permissions for publications of such contents were requested by the authors from the copyright holders; that the disclosure of images (if any) has been authorized and that it assumes full moral and/or patrimonial responsibility, due to its content, before third parties.
References
Aitchison J. 1986. The statistical analysis of compositional data: monographs on statistics and applied probability. London, Chapman & Hall Ltd. https://doi.org/10.1007/978-94-009-4109-0.
Almeida F.F.M., Hasuy Y., Brito Neves B.B., Fuck R.A. 1981. Brazilian structural provinces: an introduction. Earth Science Reviews, 17(1-2):1–29. https://doi.org/10.1016/0012-8252(81)90003-9.
Araújo M.N.C., Vasconcelos P.M., Alves da Silva F.C., Jardim de Sá E.F., Sá J.M. 2005. ^40Ar/^39Ar geochronology of gold mineralization in Brasiliano strike-slip shear zones in the Borborema Province, NE Brazil. Journal of South American Earth Sciences, 19(3):445–460. https://doi.org/10.1016/j.jsames.2005.06.009.
Baranov V. 1957. A new method for interpretation of aeromagnetic maps: pseudogravimetric anomalies. Geophysics, 22:359–382.
Brito Neves B.B., Santos E.J., Van Schmus W.R. 2000. Tectonic history of the Borborema Province, Northeast Brazil. In: Cordani U.G. et al. (ed.). Tectonic evolution of South America. Rio de Janeiro, 31st International Geological Congress, p. 151–182.
Carranza E.J.M. 2011. Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. Journal of Geochemical Exploration, 110:167–185. https://doi.org/10.1016/j.gexplo.2011.05.007.
Carranza E.J.M. 2009. Geochemical anomaly and mineral prospectivity mapping in GIS. In: Carranza E.J.M. (ed.). Handbook of exploration and environmental geochemistry. Elsevier Science B.V., p. 351. https://doi.org/10.1016/S1874-2734(09)70001-4.
Cavalcanti Neto J.G. 2008. A faixa cuprífera do Rio Grande do Norte e Paraíba e as relações de contato entre as Formações Equador e Seridó. Holos, 24(3):105–117.
Cavalcante R., Cunha A.L.C., Medeiros V.C. 2015. Programa Geologia do Brasil – PGB. Projeto Províncias Metalogenéticas do Brasil: Área PB–RN (Borborema Leste), Estados do Rio Grande do Norte e Paraíba. 1 mapa colorido, 90 × 115 cm, escala 1:250.000.
Cavalcante R. et al. 2018a. Neoarchean, Rhyacian and Neoproterozoic units of the Saquinho region, eastern Rio Piranhas–Seridó domain, Borborema Province (northeastern Brazil): implications for the stratigraphic model. Journal of the Geological Survey of Brazil, 1(1):11–29. https://doi.org/10.29396/jgsb.2018.v1.n1.2.
Cavalcante R. et al. 2016. Metalogenia das Províncias Minerais do Brasil: área Seridó leste, extremo NE da Província Borborema (RN–PB). Brasília, CPRM. (Série Províncias Minerais do Brasil, 8). Disponível em: http://rigeo.cprm.gov.br/jspui/handle/doc/17659. Acesso em: 8 jan. 2021.
Comas-Cufí M., Thió-Henestrosa S. 2011. CoDaPack 2.0: a stand-alone, multi-platform compositional software. In: Egozcue J.J., Tolosana-Delgado R., Ortego M.I. (ed.). CoDaWork'11: 4th International Workshop on Compositional Data Analysis. Sant Feliu de Guíxols.
Costa A.P., Dantas A.R. 2018. Geologia e recursos minerais da folha Lajes SB.24-X-D-VI. 1 ed. Recife, CPRM – Serviço Geológico do Brasil, v. 1, 165 p.
Costa A.P. et al. 2018. Projeto ARIM Seridó – mapa geológico-geofísico: Distrito de Bonfim, SB.24-X-D-VI e SB.24-Z-B-III. Recife, CPRM – Serviço Geológico do Brasil.
Costa A.P. et al. 2021. Fragments of juvenile Siderian continental crust in the Rio Piranhas–Seridó Domain, Borborema Province, Northeastern Brazil, as deduced by zircon U–Pb and whole-rock Sm–Nd systematics. Journal of the Geological Survey of Brazil, 4(3):223–237.
Costa A.P., Cavalcante R., Dantas A.R., Oliveira R.G., Melo S.C., Lages G.A. 2023. Áreas de relevante interesse mineral (ARIM): evolução crustal e metalogenia da Província Mineral do Seridó: estados do Rio Grande do Norte e Paraíba. Recife, CPRM.
CPRM – Serviço Geológico do Brasil. 2010. Projeto aerogeofísico Paraíba–Rio Grande do Norte e Pernambuco–Paraíba. Brasília, MME/CPRM, 389 p.
Hagemann S.G., Cassidy K.F. 2000. Archean orogenic lode gold deposits. In: Hagemann S.G., Brown P.E. (ed.). Gold in 2000. Reviews in Economic Geology, 13:9–68.
Jardim de Sá E.F. 1994. A Faixa Seridó (Província Borborema, NE do Brasil) e o seu significado geodinâmico na cadeia Brasiliana/Pan-Africana. PhD thesis, Universidade de Brasília, Instituto de Geociências, Brasília, 803 p.
Jardim de Sá E.F. et al. 1986. Supracrustais monocíclicas no extremo oeste do Rio Grande do Norte. In: Simpósio de Geologia do Nordeste, 12., Natal. Anais..., p. 62–74.
Lima E.A.M. et al. 1980. Projeto Scheelita do Seridó: relatório final: texto. Recife, DNPM/CPRM, 35 v., 1284 p.
Luiz-Silva W. 2000. Mineralizações auríferas em veios de quartzo na Faixa Seridó, NE do Brasil: exemplos de depósitos de ouro de fácies anfibolito em faixa móvel proterozóica. PhD thesis, Universidade Estadual Paulista, Instituto de Geociências e Ciências Exatas, Rio Claro.
Marques E.D. et al. 2023. Geochemical mapping by stream sediments of the NW portion of Quadrilátero Ferrífero, Brazil: application of the exploratory data analysis (EDA) and a proposal for generation of new gold targets in Pitangui gold district. Journal of Geochemical Exploration, 250:107232.
Medeiros V.C. 2004. Evolução geodinâmica e condicionamento estrutural dos terrenos Piancó Alto Brígida e Alto Pajeú, domínio da Zona Transversal NE do Brasil. PhD thesis, Universidade Federal do Rio Grande do Norte, Natal, 200 p.
Medeiros V.C. et al. 2021. The Rio Piranhas–Seridó Domain, Borborema Province, Northeastern Brazil: review of geological geochronological data and implications for stratigraphy and crustal evolution. Journal of the Geological Survey of Brazil, 4(3):179–207.
Miller H.G., Singh V. 1994. Potential field tilt – a new concept for location of potential field sources. Journal of Applied Geophysics, 32(2-3):213–217.
Oliveira C.G. et al. 2013. Contribuição ao enquadramento metalogenético da Província Mineral do Seridó. In: Seminário das Províncias Metalogenéticas Brasileiras, 1., Currais Novos. Anais..., p. 329–366.
Oliveira R.G. 2008. Arcabouço geofísico, isostasia e causas do magmatismo Cenozoico da Província Borborema e de sua margem continental (Nordeste do Brasil). PhD thesis, Universidade Federal do Rio Grande do Norte, Natal.
Pawlowsky-Glahn V., Egozcue J.J. 2016. Spatial analysis of compositional data: a historical review. Journal of Geochemical Exploration, 164:28–32. https://doi.org/10.1016/j.gexplo.2015.12.010.
Pawlowsky-Glahn V., Egozcue J.J., Tolosana-Delgado R. 2015. Modeling and analysis of compositional data. London, John Wiley & Sons, 272 p.
Reimann C., Filzmoser P., Garrett R. 2002. Factor analysis applied to regional geochemical data: problems and possibilities. Applied Geochemistry, 17(3):185–206.
Santos F.G., Morais D.M.F., Pinéo T.R.G., Santana J.S., Medeiros V.C. 2023. Updated geological map of the Borborema Province, northeastern Brazil. Journal of the Geological Survey of Brazil, 6(1):129–133. https://doi.org/10.29396/jgsb.2023.v6.n1.7. Disponível em: https://jgsb.cprm.gov.br/index.php/journal. Acesso em: 7 ago. 2025.
Saunders D. et al. 1993. Relation of thorium-normalized surface and aerial radiometric data to subsurface petroleum accumulations. Geophysics, 58(10):1417–1427.
Souza Neto J.A. et al. 2008. W–Au skarns in the Neoproterozoic Seridó Mobile Belt, Borborema Province in northeastern Brazil: an overview with emphasis on the Bonfim deposit. Mineralium Deposita, 43:185–205.
Spector A., Grant F.S. 1970. Statistical models for interpreting aeromagnetic data. Geophysics, 35(2):293–302.
Van Schmus W.R. et al. 2003. The Seridó Group of NE Brazil, a late Neoproterozoic pre- to syn-collisional basin in West Gondwana: insights from SHRIMP U–Pb detrital zircon ages and Sm–Nd crustal residence (TDM) ages. Precambrian Research, 127:287–386.
Van Schmus W.R. et al. 1997. Application of U–Pb and Sm–Nd geochronology to understanding the geotectonic history of the Borborema Province, NE Brazil and its implications for the evolution of West Gondwana. In: South American Symposium on Isotope Geology, 1, Campos do Jordão. Anais..., p. 27–29.
Van Schmus W.R., Kozuch M., Brito Neves B.B. 2011. Precambrian history of the Zona Transversal of the Borborema Province, NE Brazil: insights from Sm–Nd and U–Pb geochronology. Journal of South American Earth Sciences, 31(1-2):227–252. https://doi.org/10.1016/j.jsames.2011.02.010.
Yousefi M., Kamkar-Rouhani A., Carranza E.J.M. 2012. Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration, 115:24–35.
Yousefi M., Kamkar-Rouhani A., Carranza E.J.M. 2014. Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochemistry: Exploration, Environment, Analysis, 14:45–58.