The Troia–Pedra Branca mafic–ultramafic complex, Borborema Province, Brazil: Records of 2.04 Ga post–collisional Alaskan–type magmatism and PGE mineralization
Main Article Content
Abstract
The Troia–Pedra Branca complex is the most extensive exposure of mafic–ultramafic rocks in the Borborema Province, northeastern Brazil. These rocks have been known for a long time, particularly because of their platinum group element (PGE) mineralization associated with chromitites. The Troia–Pedra Branca complex consists of a succession of serpentinites (after dunite), metachromitites, metaperidotites, hornblendites and metagabbros. PGE–bearing metachromitites are hosted by the serpentinite–peridotite unit, occurring as dispersed blocks, well preserved from weathering. However, host metadunites are poorly preserved, and are only accessed by drill core samples. Scanning Electron Microscopy (SEM) analysis in thin sections of selected metachromitite samples revealed that most of the platinum group minerals (PGM) occur in the chlorite–serpentine matrix, generally in contact with chromite grains. The main PGM are sperrylite (PtAs2), cooperite (PtS), irarsite ((Ir,Pt,Rh)AsS) and hollingworthite ((Rh,Pd,Pt,Ru)AsS). Within chromite grains, very few PGM were found, and sulfide inclusions are mainly chalcopyrite (CuFeS2), pentlandite ((Fe,Ni)9S8) and bornite (Cu5FeS4). Whole–rock geochemical data reveal that metagabbros are LILE–enriched and show subduction–related signature similar to that of Alaskan–type intrusions. Mineral chemistry of chromite and olivine is also compatible with arc–related Alaskan–type complexes. The U–Pb SHRIMP zircon age for a metachromitite sample yielded an upper intercept age of 2036 ± 27 Ma, which we interpret as the crystallization age. However, dispersion in the data implies that zircons lost variable amounts of radiogenic Pb at around 749 ± 54 Ma (lower intercept), which may be related to Neoproterozoic metamorphism. The age obtained for the Troia–Pedra Branca metachromitites (2036 Ma) is younger than the 2190–2130 Ma arc–related plutons of the area, and it is closely related in age to the 2.10–2.04 Ga syn– to late–collisional plutonism and high–temperature metamorphism. Therefore, this Alaskan–type mafic–ultramafic magmatism may be related to the post–collisional setting of the 2.2–2.0 Ga Eburnean/Transamazonian orogeny.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The papers are published in the open access format, being freely available to any user, under a CC-BY Creative Commons license.
By submitting this manuscript for evaluation, the authors are aware of the CC-BY Creative Commons license. In the case of manuscript approval, the author responsible for the manuscript (corresponding author), hereinafter referred to as CEDENTE (ASSIGNOR), hereby assigns and transfers to CPRM-Serviço Geológico do Brasil, holder of the JGSB, free of charge, on his behalf and on behalf from all co-authors, the right of the first publication. This includes the rights of editing, publication, translation into another language and reproduction by any process, worldwide, today and in the future.
After the first publication by the JGSB, authors hold the copyright without restrictions and are allowed to disclose and distribute their work through personal website pages and institutional repositories.
At the same time, the ASSIGNOR declares that the content of the manuscript is of sole responsibility of the authors and that this content does not infringe the copyrights and/or other property rights of third parties, that is, that any contents of the manuscript and its attachments, if taken from other publications, are duly referenced and, when necessary, the permissions for publications of such contents were requested by the authors from the copyright holders; that the disclosure of images (if any) has been authorized and that it assumes full moral and/or patrimonial responsibility, due to its content, before third parties.