A scientometric study on Artificial Intelligence for landslide prediction: Trends, collaborations, and advances

Main Article Content

Mallikarjun Kappi
https://orcid.org/0000-0003-1964-3498
Ghouse Modin Nabeesab Mamdapur
https://orcid.org/0000-0003-4155-1987
Mallikarjuna Bhovi
https://orcid.org/0000-0002-1113-1386
Suresh Jange
https://orcid.org/0000-0003-2627-482X

Abstract

This scientometric study analysed 1,834 publications (2009–2023) on artificial intelligence applications in landslide prediction, revealing rapid growth (26.66% annual citation rate) with an average of 45.80 citations per paper. Despite the increased number of publications, the citation impact has not increased proportionally. The top 25 authors contributed 50.87% of the total output, while international collaborations (42.42% of papers) drove progress, with China and Vietnam as key contributors. Funded research (1,307 papers) generated 59,863 citations. Geology dominated the discipline, although agriculture achieved the highest citation impact. Q1 journals (e.g. Catena and Landslides) outperformed Q2 venues (e.g. Remote sensing) in terms of citations. Among the 227 highly cited papers (12.38% of the total), the average citation count was 215.1. The core themes included machine learning, landslide susceptibility, and deep learning. The findings highlight AI’s multidisciplinary potential of AI but underscore the need for enhanced international collaboration, explainable AI for model transparency, and strategies to mitigate citation biases to maximise research impact.

Article Details

How to Cite
Kappi, Mallikarjun, Ghouse Modin Mamdapur, Mallikarjuna Bhovi, and Suresh Jange. 2025. “A Scientometric Study on Artificial Intelligence for Landslide Prediction: Trends, Collaborations, and Advances”. Journal of the Geological Survey of Brazil 8 (3). https://doi.org/10.29396/jgsb.2025.v8.n3.4.
Section
Accepted Manuscripts

References

Alamah, Z., AlSoussy, I., & Fakih, A. (2023). The Role of International Research Collaboration and Faculty Related Factors in Publication Citations: Evidence from Lebanon. In Economies (Vol. 11, Issue 3). https://doi.org/10.3390/economies11030090

AlShebli, B., Memon, S. A., Evans, J. A., & Rahwan, T. (2024). China and the U.S. produce more impactful AI research when collaborating together. Scientific Reports, 14(1), 1–23. https://doi.org/10.48550/arXiv.2304.11123

Binu, K. E., Anoopkumar, L. T., Sunil, M., Jose, M., & Preetha, K. G. (2024). Dynamic Landslide Prediction, Monitoring, and Early Warning with Explainable AI: A Comprehensive Approach. 2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC), 960–965. https://doi.org/10.1109/ICAAIC60222.2024.10575330

Blasch, E., Pham, T., Chong, C.-Y., Koch, W., Leung, H., Braines, D., & Abdelzaher, T. (2021). Machine Learning/Artificial Intelligence for Sensor Data Fusion–Opportunities and Challenges. IEEE Aerospace and Electronic Systems Magazine, 36(7), 80–93. https://doi.org/10.1109/MAES.2020.3049030

Cheung, R. W. M., Li, H. W. M., & Chu, E. K. H. (2023). Exploratory Study of using Artificial Intelligence for Landslide Predictions. Proceedings of The HKIE Geotechnical Division 43rd Annual Seminar: Towards a Smart-Green-Resilient Geo-Future for World-Class City Development" (GDAS2023), 215–229. https://doi.org/10.21467/proceedings.159

Collection, S. C. (2023). Introducing the Journal Citation Indicator. In Clarivate.

Gould, K. A. (2023). Journal Citation Reports 2023: Understanding Bibliometric Data. Dimensions of Critical Care Nursing : DCCN, 42(5), 245–247. https://doi.org/10.1097/DCC.0000000000000603

He, R., Zhang, W., Dou, J., Jiang, N., Xiao, H., & Zhou, J. (2024). Application of artificial intelligence in three aspects of landslide risk assessment: A comprehensive review. Rock Mechanics Bulletin, 3(4), 100144. https://doi.org/https://doi.org/10.1016/j.rockmb.2024.100144

IPCC. (2023). Section 4: Near-Term Responses in a Changing Climate. In Climate Change 2023: Synthesis Report. https://doi.org/10.59327/IPCC/AR6-9789291691647

Jakab, M., Kittl, E., & Kiesslich, T. (2024). How many authors are (too) many? A retrospective, descriptive analysis of authorship in biomedical publications. Scientometrics, 129(3), 1299–1328. https://doi.org/10.1007/s11192-024-04928-1

Jiang, S., Ma, J., Liu, Z., & Guo, H. (2022). Scientometric Analysis of Artificial Intelligence (AI) for Geohazard Research. Sensors, 22(20). https://doi.org/10.3390/s22207814

Kainthura, P., & Sharma, N. (2022). Hybrid machine learning approach for landslide prediction, Uttarakhand, India. Scientific Reports, 12(1), 20101. https://doi.org/10.1038/s41598-022-22814-9

Kappi, M., & B, M. (2024). Artificial intelligence and machine learning for disaster prediction : a scientometric analysis of highly cited papers. Natural Hazards. https://doi.org/https://doi.org/10.1007/s11069-024-06616-y

Kappi, M., Chaman Sab, M., & Biradar, B. S. (2021). Measuring research productivity of “Universities with Centre with Potential for Excellence in Particular Area (CPEPA) status” in Karnataka state. DESIDOC Journal of Library & Information Technology, 41(5), 43. https://doi.org/10.14429/djlit.41.5.16507

Kappi, M., Mamdapur, G. M., Biradar, B. S., & Bhovi, S. Y. (2024). Growth and Trends of Geometrical Optics Research Using Scientometrics Indicators. Science & Technology Libraries, 1–14. https://doi.org/10.1080/0194262X.2024.2360975

Korup, O., & Stolle, A. (2014). Landslide prediction from machine learning. Geology Today, 30(1), 26–33. https://doi.org/10.1111/GTO.12034

Kumar, D., Thakur, M., Dubey, C. S., & Shukla, D. P. (2017). Landslide susceptibility mapping & prediction using Support Vector Machine for Mandakini River Basin, Garhwal Himalaya, India. Geomorphology, 295, 115–125. https://doi.org/https://doi.org/10.1016/j.geomorph.2017.06.013

Li, B., Liu, K., Wang, M., He, Q., Jiang, Z., Zhu, W., & Qiao, N. (2022). Global Dynamic Rainfall-Induced Landslide Susceptibility Mapping Using Machine Learning. In Remote Sensing (Vol. 14, Issue 22). https://doi.org/10.3390/rs14225795

Lima, P., Steger, S., Glade, T., & Murillo-García, F. G. (2022). Literature review and bibliometric analysis on data-driven assessment of landslide susceptibility. Journal of Mountain Science, 19(6), 1670–1698. https://doi.org/10.1007/s11629-021-7254-9

Mallikarjuna, B., Kappi, M., & Taj, S. (2024). Bibliometric Analysis of the Journal of Big Data : Trends , Impact , and Future Directions. Shanlax International Journal of Arts, Science and Humanities, 12(1), 100–114. https://doi.org/10.34293/ sijash.v12i1.7762

Meho, L., & Akl, E. (2024). Using Bibliometrics to Detect Unconventional Authorship Practices and Examine Their Impact on Global Research Metrics, 2019-2023. In Preprints. Preprints. https://doi.org/10.20944/preprints202407.0691.v1

Moustafa, K. (2024). Why most journal impact factors are false. OSF Preprints, 1–7. https://doi.org/10.31219/osf.io/8g67q

Nocentini, N., Rosi, A., Segoni, S., & Fanti, R. (2023). Towards landslide space-time forecasting through machine learning: the influence of rainfall parameters and model setting. Frontiers in Earth Science, Volume 11. https://doi.org/10.3389/feart.2023.1152130

P, L., C, M., Mathew, A., & Shekar, P. R. (2025). Machine learning and deep learning-based landslide susceptibility mapping using geospatial techniques in Wayanad, Kerala state, India. HydroResearch, 8, 113–126. https://doi.org/https://doi.org/10.1016/j.hydres.2024.10.001

Serpa, S., Wang, F., & Zhou, L. (2024). Artificial Intelligence as Author of Scientific Publications. Science Insights, 44(1), 1215–1219. https://doi.org/10.15354/si.24.re866

Sharma, Akanksha, Raj Chopra, S., Gajanan Sapate, S., Arora, K., Khalid Imam Rahmani, M., Jha, S., Ahmad, S., Ezaz Ahmed, M., Abdeljaber, H. A. M., & Nazeer, J. (2024). Artificial Intelligence Techniques for Landslides Prediction Using Satellite Imagery. IEEE Access, 12(August), 117318–117334. https://doi.org/10.1109/ACCESS.2024.3446037

Sharma, Amol, Chander, P., Estifanos Lemma, G., & and Sharma, R. (2023). An artificial intelligence based framework to analyze the landside risk of a mountainous highway. Geocarto International, 38(1), 2186494. https://doi.org/10.1080/10106049.2023.2186494

Singha, C., Rana, V. K., Pham, Q. B., Nguyen, D. C., & Łupikasza, E. (2024). Integrating machine learning and geospatial data analysis for comprehensive flood hazard assessment. Environmental Science and Pollution Research, 31(35), 48497–48522. https://doi.org/10.1007/s11356-024-34286-7

Thirugnanam, H. (2023). Deep Learning in Landslide Studies: A Review. In Progress in Landslide Research and Technology (Vol. 1, Issue 2, pp. 247–255). Springer International Publishing. https://doi.org/10.1007/978-3-031-18471-0_20

Vaishya, R., Gupta, B. M., Kappi, M. M., Mamdapur, G. M. N., & Vaish, A. (2024). Global research output and highly-cited publications on prosthetic joint infections: A bibliometric analysis (2003-2022). Journal of Clinical Orthopaedics and Trauma, 50, 102373. https://doi.org/https://doi.org/10.1016/j.jcot.2024.102373

Vaishya, R., Kappi, M. M., Gupta, B. M., Mamdapur, G. M. N., & Vaish, A. (2024). Global Stem Cell Research in Orthopaedics: A Bibliometric Study from 1995 to 2020. Indian Journal of Orthopaedics, 58(7), 876–886. https://doi.org/10.1007/s43465-024-01160-0