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The Cinzento Lineament (Carajás Mineral Province) represents a complex deformational system with 
great associated mineral potential, mainly for IOCG deposits. However, the tropical vegetation of the 
Amazon rainforest considerably limits the number of outcrops available for systematic geological ma-
pping. Therefore, the use of remote data such as airborne geophysics and remote sensing is essential 
to provide a reliable geological map. The airborne magnetometric data to define lithological units and 
its boundaries is a challenge, especially in regions with low magnetic latitude and/or remanent mag-
netization. In this work, we proposed an approach using Magnetization Vector Inversion (MVI) to map 
the distribution of the magnetic susceptibility, in order to replace techniques such as pole reduction and 
total gradient. We applied the Random Forest algorithm (supervised Machine Learning algorithm) to 
recognize patterns in remote data and improve the current mapped lithological units. With 1400 training 
samples (2.5% of the total samples), we produced two Predictive lithological maps: a first with remote 
data only and a second with remote data and spatial coordinates. We evaluate the advantages and 
disadvantages of each Predictive map, and we conclude that both maps need to be analyzed together 
for the refinement of the current geological map. These predictive maps represent a powerful tool to 
combine remote data to improve current geological maps, or even generate the first-pass geological 
map for regions with scarce geological knowledge.
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1. Introduction 

The geological mapping in tropical areas with dense rain 
forest vegetation and thick supergene covers is challenging 
as rock exposure is very poor, and access to outcrops can be 
difficult. The use of remote sensing and airborne geophysics in 
these areas is essential to recognize and delimitate lithological 
units in the construction of geological maps, which are usually 
drawn manually by the interpreter. However, these maps are 
highly dependent on the prior knowledge of the interpreter; in 
other words, different interpreters can create different maps from 
the same data. The use of Machine Learning Algorithms (MLA) is 
a valuable tool to automatically recognize patterns among high-
dimensional data to mitigate bias and to speed up interpretations, 
especially in regions where geophysical and remote-sensing 
data are widely available. Therefore, MLA represents an efficient 
method for producing greenfield geological maps or improving 
existing maps (e.g. Cracknell et al. 2014; Harris and Grunsky 
2015; Kuhn et al. 2018; Radford et al. 2018).

The Carajás Mineral Province (CMP), in the southeastern 
Amazonian Craton, Brazil, is an example of such difficulties. 
Classic geological mapping at semi-detail scales (1:100.000, 

1:50.000) is viable, especially in deforested areas, yet 
strongly based in remote sensing and airborne geophysics 
interpretation. Furthermore, vast areas covered by rainforest 
and with poor access are completely mapped through 
somehow biased geological-geophysical interpretation. The 
CMP is one of the largest mineral provinces in the world, 
with giant iron deposits and also rich in other resources such 
as copper, gold, PGE, chromium, nickel, manganese, REE, 
uranium and tin; which reinforces the necessity of delivering 
precise geological maps to the society, government and mining 
industry. Therefore, the Geological Survey of Brazil (CPRM) 
maintains a permanent geological mapping and metallogenic 
program in the CMP since 2008.

One of the areas recently surveyed by CPRM is the Cinzento 
Lineament region (Figure 1a), situated in the northernmost part 
of the Carajás Copper-Gold Belt (Tallarico et al. 2005). The 
Cinzento Lineament region hosts several IOCG (Iron Oxide 
– Copper – Gold), VMS (Volcanic Massive Sulfides), and 
granite-related copper-gold and polymetallic deposits, such 
as Salobo, Furnas, Pojuca and Paulo Afonso. Remote sensing 
and geophysical data were strongly used to elaborate the 
recently published geological map (Figure 1b - Oliveira et al. 
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Figure 1 -  a) Tectonic compartmentalization of the Southern Amazonian craton proposed by Vasquez et al. (2008) highlighting the region of the 
Cinzento Lineament. b) Lithological Map of Cinzento Lineament (Oliveira et al. 2018).

2018), as about 50% of the area comprises an environmental 
conservation unit with very limited road access.  

In this work, we evaluated several supervised MLA in order 
to build a Predictive Lithological map of the Cinzento Lineament, 
based on a dataset that includes airborne magnetometric, 
radiometric and SRTM (Shuttle Radar Topography Mission) 
data. We built a predictive map with enough equivalence to the 
geological chart that was developed by combining traditional 
surveying tools (fieldwork and manual interpretation of remote 
sensing and airborne geophysical images). 

2. Geological Framework 

In general lines, there are three main rock crystallization 
or depositional ages in the CMP: in the Mesoarchean (3.06-
2.83 Ga), Neoarchean (2.76-2.55 Ga) and Paleoproterozoic 
(2.10-1.88 Ga); all of them represented in the lithostratigraphic 
framework of the Cinzento Lineament region (Table 1). The 
Mesoarchean lithologies include orthogneisses, greenstone 
belts and granitoids developed under an accretionary-
collisional system with peak metamorphism at 2.85 Ga 
(Tavares et al. 2018; Machado et al. 1991). 

The Mesoarchean units are the basement of the 
Neoarchean Itacaiúnas Supergroup (DOCEGEO 1988), 
which comprises a volcano-sedimentary sequence with mafic 

and felsic volcanic rocks in its lowermost unit (Parauapebas 
Formation), followed by thick BIF layers (Carajás Formation) 
and, at the top, clastic and chemical metasedimentary rocks 
interbedded with fewer volcanic rocks and BIF (represented 
by the Igarapé Cigarra and Salobo-Pojuca formations in 
the study area). Coeval bimodal magmatism is represented 
by A-type granitic plutons and mafic-ultramafic intrusions, 
such as the Gelado Metagranite (Barbosa 2004). The 
Paleoproterozoic sedimentary cover is represented by the 
clastic Águas Claras Formation, while plutonic units include 
A-type granitic bodies of the Serra dos Carajás Intrusive 
Suite, such as the Pojuca and Cigano granites (Dall’Agnol 
et al. 2005).

The Mesoarchean and Neoarchean units are strongly 
structured in the WNW-ESE along the study area. For Costa 
and Siqueira (1990), this feature is the result of a long-term 
strike-slip fault system with multiple reactivations, namely 
the Cinzento Lineament. Tavares et al. (2017), however, 
reinterpreted the tectonic features of the Cinzento Lineament 
as the result of a complex multistage tectonic evolution, 
marked by the overlapping of several compressive and 
extensional phases. For Tavares et al. (2017), the main 
structures are understood as deep discontinuities related to 
the basement framework, reactivated as extensional faults 
during the deposition of the Itacaiúnas Supergroup and the 
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emplacement of the Gelado Metagranite, then again 
reactivated during the Paleoproterozoic Transamazonian 
Orogenic Cycle as ductile reverse shear zones, between 2.10 
and 2.07 Ga (Tavares et al. 2018). All the tectonic system was 
later affected by a second Paleoproterozoic orogeny, known 
as the Sereno Event (1.98-1.95 Ga, see Tavares et al. 2018), 
of intracontinental character and ductile-brittle behavior. The 
collapse of the Paleoproterozoic orogenies also produced 
a later extensional reactivation, in a brittle, fluid-dominant 
environment, contemporary to the emplacement of the A-type 
plutons of the Serra dos Carajás Intrusive Suite. 

3. Data 

The airborne geophysical data are a compilation of three 
projects contracted by the Geological Survey of Brazil: Oeste 
de Carajás, Rio Maria and Tucuruí. These projects were 
carried out between 2003 and 2009 and have flight lines with 
a spacing of 500 m (N-S direction) and control lines with a 
spacing of 10 km (E-W direction). The airborne magnetic data 
were interpolated into a grid using the bi-directional method 
and the radiometric data with the minimum curvature method 
(Briggs 1974), both with a 125 m cell.

The airborne magnetic data are widely used in geological 
mapping due to the usually good variation of magnetic 
susceptibility in rocks. In machine learning applied to 
predictive lithology, the most commonly used magnetic 
processing is the Reduced-To-Pole (RTP - Baranov 1957; 
Gunn 1975) since the RTP anomalies have a clear spatial 
correlation with the lithological units. However, at low 
magnetic latitudes (as in the Cinzento Lineament region) 
the RTP shows poor performance, retaining part of the 
initial dipoles and creating biased artifacts (Silva 1986). 

Another approach is to use the Total Gradient (Nabighian 
1972) which centralizes the anomaly above the magnetic 
source. However, the Total Gradient commonly shows 
lateral dispersions, making it difficult to define the geological 
boundaries between units sharply.

To overcome these issues, we suggest a new approach 
using a superficial horizontal slice from the Magnetic Vector 
Inversion (MVI - Ellis et al. 2012). The MVI directly inverts the 
magnetization vector accommodating effects of low latitudes 
and remanent magnetization (Johnson and Aisengart 2014). 
Figure 2a shows the result of the MVI to a depth of 100 meters.

The radiometric data are dependent on sources up to 30 
cm beneath the Earth’s surface, which makes these data 
highly correlated with geological field data. As the airborne 
radiometric data were obtained at different periods, they were 
initially compensated using a linear relationship between the 
data from an intersection area between adjacent projects. 
The radiometric data show the contents of Potassium (K), 
Uranium (eU) and Thorium (eTh), which were added to our 
database. We did not use ratios among the elements to not 
overparameterize the final model. Figure 2b displays an RGB 
ternary image with K (red), eTh (green) and eU (blue). Our 
database also included a digital elevation model derived from 
the SRTM (Figure 2c). Despite being very useful in other 
studies (e.g. Kuhn et al. 2018; Cracknell et al. 2014), our 
preliminary analysis showed a significant bias in Landsat-8 
data (Figure 2d). The preliminary results showed a high 
correlation between lithological units covered by dense 
vegetation, due to its homogeneous coverage. Moreover, the 
lithological units appeared highly controlled in the boundaries 
between dense vegetation and anthropized areas (e.g. mines, 
tailings dams, cities). Consequently, the Landsat data were 
not used in predictive models.

Table 1 - Simplified stratigraphic chart of the Cinzento Lineament region (Oliveira et al. 2018)

Age Unit 
Code Unit Name Unit Lithotypes

Cenozoic
Q2a Alluvial deposits Sands, silts, clays, and gravel

Elm Lateritic Cover Laterites

Paleoproterozoic

PP3γci Cigano Granite A-type monzogranites to sienogranites 

PP3γpo Pojuca Granite A-type monzogranites to sienogranites

PP23ac Águas Claras Formation Siliciclastic sequence with intercalation of metarenites, metassiltites, and metargilites

Neoarchean

A4γ2gl Igarapé Gelado Metagranite A-type metamonzogranites and metagranodiorites

A4ci Igarapé Cigarra Formation Clastic metasedimentary rocks with iron formations

A4pj Salobo-Pojuca Formation Quartzites, shists, BIF

A4pjp Salobo-Pojuca Formation Quartzites, metacherts, muscovite-quartz schist and quartz sericite schist

A4pjq Salobo-Pojuca Formation Al-rich shists

A4cj Carajás Formation BIF

A4ppf Felsic Parauapebas Formation Felsic metavolcanic rocks, meta pyroclastics and chert

A4ppm Mafic Parauapebas Formation Mafic to intermediate metavolcanic rocks 

Mesoarchean A3xi  Xingu Complex Monzodioritic to tonalitic Orthogneisses
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Figure 2 - The data used as input in the machine learning algorithms in this study. a) Magnetic Vector Inversion, b) Ternary RGB map (K, eTh 
and eU), C) Shuttle Radar Topography Mission (SRTM) and d) false color (RGB) of Landsat 8 combining bands 4 (red), 3 (green) and 2 (blue).
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All data (airborne geophysical and SRTM) were 
reprojected to the coordinate system SIRGAS 2000 - UTM 
zone 22 south. Furthermore, we performed downsample 
to cells with 250 meters in all grids. This pre-processing 
resulted in 55,305 instances in which each one comprises all 
input data. Since we performed a supervised classification, 
it was necessary to take a small representative data do train 
the model (Hastie et al. 2009). In theory, records of field 
observation are the best data to compose training data. In 
practice, in a geological survey, the units are not sampled 
homogeneously, which can bias the model for the classes 
(or lithological unit) with the most significant number of 
samples (Japkowicz and Stephen 2002; Cracknell et al. 
2014). Alternatively, it is possible to use random samples 
extracted from previous geological maps such as training 
data. Therefore, we followed previous works (Cracknell et 
al. 2014; Kuhn et al. 2018) and used 100 random samples 
per lithological unit. Another approach could be to define 
the number of samples by the area of the lithological unit; 
however, this procedure can bias the predictive model for 
classes with a large area (Japkowicz and Stephen 2002). 
Therefore, our training data resulted in 1400 samples (Figure 3)  
with their classes extracted randomly from the current 
geological map (Oliveira et al. 2018), which represents 
2.5% of the total sample amount (55,305 samples). This 
rate is close to those of Cracknell et al. (2014) and Kuhn et 
al. (2018), which used 2.6% and 1.6% of the total sample 
amount, respectively.

4. Methods

4.1. Evaluation of Machine Learning Algorithms 

Several supervised MLA can provide satisfactory 
predictions from a small number of training data samples. In 
this work, we perform an initial analysis of five MLA through 
k-fold Cross-validation Accuracy. This approach splits the 
instances into several folds and uses one fold at a time as 
a trainer to predict the remainder. Our work evaluated the 
Cross-validation Accuracy with ten folds for the MLAs: Naive 
Bayes, k-Nearest Neighbors (Cover and Hart 1967), Support 

Vector Machines (Vapnik 1998), Artificial Neural Networks 
and Random Forest (Breiman 2001). In agreement with 
Cracknell and Reading (2014), the Random Forest showed 
the best accuracy for predictions for our database (Table 2).

Figure 3 - Location of training points used as input in the Machine Learning Algorithms. The training points database is composed of 100 
random samples from each class (or lithological unit) resulting in 1400 samples.

Table 2 - Evaluation of Machine Learning Algorithms through Cross-
validation Accuracy (%).

Machine Learning Algorithm Cross-validation Accuracy (%)

Random Forest 76.9

Neural Network 74.1

Naive Bayes 67.3

k-Nearest Neighbors 64.2

Support Vector Machines 25.9

4.2. Random Forest Algorithm

The Random Forest algorithm (RF) is an ensemble 
classification method that uses bootstrap aggregation 
to create multiple decision trees (Breiman 2001). This 
approach randomly selects 2/3 of the training samples with 
replacement to generate a data set (“in-bag” data) of the 
same size as the training data. The in-bag data classify a 
decision tree through the Gini index (Breiman et al. 1984) 
that determines the best parting for a given class, while 
the remaining data (“out-of-bag” data) are used to validate 
the model. The significant advantage of the RF is that the 
prediction of a class is a function of the average of the 
multiple decisions trees, thus improving the predictions and 
mitigating errors from outliers. In our predictive model, we 
have reached a suitable accuracy with 100 trees without a 
maximum limit in depth for each one (Table 3).

Figure 4 shows some of the multiple trees used in this 
work viewed as Pythagorean trees (Beck et al. 2014). In this 
representation, the size of the rectangles is proportional 
to the number of samples, and the most probably class 
defines the colors.
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 The RF also can provide a rank of the input variables 
concerning the importance in the predictions. Therefore, 
we perform some accuracy cross-validation tests for each 
addition of a variable follow the rank (Table 4). The Thorium 

Number of Trees Cross-validation Accuracy (%)

1 0.65

10 0.79

50 0.825

100 0.829

500 0.824

1000 0.826

Table 3 - Evaluation of Cross-validation Accuracy (%) with the 
number of trees. The bold text indicates the point where the accuracy 
stops progressing.

Table 4 - Cross-validation accuracy % for each influence rank in the 
Random Forest.

(eTh) has shown to have the most significant importance in 
the predictions, which is compatible since it represents the 
radioelement with less mobility and consequently the most 
related to the lithological units.

Rank Data Cross-validation Accuracy

1 eTh 47.2 %

2 SRTM 60.7 %

3 eU 64.4 %

4 MVI 71.8 %

5 K 76.9 %

Figure 4 - Examples of Pythagorean trees from the multiple trees used in this work. Colors show the most likely classes on each node and the 
size of the rectangle is proportional to the number of samples in each group.
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5 Results 

The Random Forest algorithm shows, as a result, a class 
probability map for each class defined in the training data (e.g. 
Figure 5). These probabilities can be spatially categorized in the 
most probable class creating a Predictive map. Figure 6 shows 
the comparison between the current geological map (Figure 6a), 
the spatial distribution of the training points (Figure 6b) and the RF 
Predictive Lithological map with airborne geophysics and SRTM 
(Figure 6c). The RF Predictive map with remote data predicted 
52.7% of the current geological data (correct predictions/total 
predictions). This mismatch between the geological map and 
the Predictive map may represent misclassified samples in the 
training data, inappropriate predictions and/or the degree of new 
information that can be taken from the remote data to improve 
the current geological map.

Table 5 shows the predicted percentage for each 
lithological unit and the second most related. The smaller 
classes (and fewer samples) tend to have a better recovery 
due to its lower variation. For example, the Paleoproterozoic 
Pojuca Granite (PP3γpo) has a predicted percentage 
of 81.1%; however, the sample amount of this unit (106 
samples) is remarkably lower concerning larger units as 
the Igarapé Gelado Metagranite (A4γ2gl) which has 23,553 
samples. In this case, the Igarapé Gelado Metagranite 
represent a lithological unit with considerable compositional 
variation, and in some regions has similarities with other 
units such as Cigano Granite (PP3γci - 11.8%). In the same 
way, a small part of the occurrence of felsic metavolcanic 
rocks (A4ppf) presents great similarities with orthogneisses 
of the Xingu Complex (A3xi - 19.7%). These regions may 
represent a class error; however, they also may represent 
lithofacies variations or small contrasting lithologies within 
the Igarapé Gelado Metagranite (A4γ2gl) or portions of 
orthogneisses preserved within felsic metavolcanic rocks 
(A4ppf), respectively.

Despite the satisfactory recovery (52.7%), the Predictive 
map with remote data (Figure 6c) presents a considerable 
content of high-frequency noise. Cracknell and Reading 
(2014) proposed that the use of spatial coordinate constraints 

could significantly reduce this high-frequency content. 
Therefore, we inserted constrains containing the spatial 
coordinates of the instances in order to mitigate noise and 
improve model recovery. Figure 6d shows the Predictive 
Lithological map with remote data and spatial correlation. 
This predictive map recovered 78.7% of the geological map, 
which represents a compatible recovery in comparison with 
previous works. For example, Yu et al. (2012) obtained a 
prediction of 62.2% using Support Vector Machines (SVM) 
and an 11 x 11 majority filter. Kuhn et al. (2018) and Cracknell 
et al. (2014) through the Random Forest algorithm predicted 
76% and 78%, respectively. Table 6 shows a substantial 
increase in recovery when spatial constraints are inserted. 
The predicted percentage ranges from 59.6 to 98.1%, while 
for the predictive map without spatial correlation it varies 
between 36.9 and 81.1% (Table 5).

6. Discussions 

The Random Forest produced two predictive maps: one 
with remote data only (Figure 6c), and one with remote data 
and spatial coordinates (Figure 6d). In the first case (only with 
remote data), the predictive map shows a considerable amount 
of noise; however, it also showed potential areas for reevaluation. 
In the northwest portion, the geological map (Figure 6a) shows 
an expressive occurrence of the Igarapé Gelado Metagranite 
(A4γ2gl), however, the predictive map shows that this region 
has more similarities with the Mafic Parauapebas (A4ppm) or 
with Salobo-Pojuca (A4pj / A4pjp) formations or even shows 
that the occurrence of metavolcano-sedimentary rocks in the 
northwest portion is much more common than in the southeast 
portion as is shown on the current geological map (Oliveira 
et al. 2018). Considering that this entire northwestern portion 
comprises the area of environmental protection and thus was 
barely investigated with the geological mapping, the current 
interpretation of this portion of the map is mainly reflected by the 
interpretation of the remote sensors and airborne geophysical 
images. Therefore, it is suggested to re-evaluate the possibility 
to improve the interpretation with the new data obtained with 
the predictive map of this work. Also in the northwest, the 

Figure 5 - An example of class probability (in percentage) for the lithological unit A4γ2gl from the Predictive Lithological map with remote data only.
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Figure 6 - Comparison between the a) Lithological Map of Cinzento Lineament from Oliveira et al. (2018), b) training points, c) Predictive 
Lithological Map using remote data only, and d) the Predictive Map with remote data and spatial correlation. The limits of the geological map 
were superimposed on the predictive map to improve the association.
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Lithological Unit Actual Samples Predicted Samples Predicted Percentage Second Most Related Unit

A4ppf 834 818 98.1 % A4cj (0.8 %)

PP3γpo 106 101 95.3 % PP23ac (2.8 %)

A4ci 138 128 92.8 % A4ppm (4.8 %)

PP3γci 985 884 89.7 % A4γ2gl (3.1 %)

Elm 899 785 87.3 % A4pjq (4.8 %)

Q2a 438 377 86.1 % A4ci (5.3 %)

A4pjp 1,702 1,461 85.6 % A4pjq (5.7 %)

A3xi 9,600 8,188 85.3 % Q2a (2.7 %)

PP23ac 3,883 3,075 79.2 % Elm (7.5 %)

A4pjq 5,530 4,329 78.3 % A4pjp (9.5 %)

A4γ2gl 23,553 18,452 78.3 % A4cj 6.7 %)

A4pj 1,852 1,446 78.1 % A4γ2gl (5.1 %)

A4cj 1,481 957 64.5 % A4ppm (9.5 %)

A4ppm 4,452 2,652 59.6 % A4cj (9.5 %)

Table 6 - The recovery of the predicted samples of the Predictive Lithological Map using remote data and spatial correlation. The last column 
shows the unit that most relates to the main class.

Table 5 - The recovery of the predicted samples of the Predictive Lithological Map using remote data only. The last column shows the unit that 
most relates to the main class.

Lithological Unit Actual Samples Predicted Samples Predicted Percentage Second Most Related Unit

PP3γpo 106 86 81.1 % PP3γci (8.5 %)

Elm 899 716 79.6 % PP23ac (5.9 %)

Q2a 438 331 75.6 % PP3γci (6.8 %)

A4ci 138 95 68.8 % A4cj (8.0 %)

A3xi 9,600 6,407 66.7 % A4ppf (12.5 %)

PP3γci 985 613 62.2 % A4γ2gl (11.2 %)

A4pjp 1,702 1,000 58.6 % PP23ac (10.6 %)

PP23ac 3,883 2,161 55.7 % Elm (11.3 %)

A4γ2gl 23,553 12,066 51.2 % PP3γci (11.8 %)

A4cj 1,481 684 46.2 % A4ppm (13.4 %)

A4ppf 834 383 45.9 % A3xi (19.7 %)

A4pjq 5,530 2,310 41.8 % A4ppf (12.1 %)

A4pj 1,852 752 40.6 % A4cj (11.9 %)

A4ppm 4,452 1,641 36.9 % A4cj (13.3 %)
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geological map shows an intrusive Paleoproterozoic body 
related to Cigano Granite (PP3γci); however, the predictive 
map does not recognize this Paleoproterozoic body and 
proposes a Salobo-Pojuca Formation (A4pj / A4pjp) instead. 
The predictive map with remote data only showed several new 
portions of Laterite Cover (Elm) that can be validated by its 
clear signature in the SRTM (plateaus) and radiometric data 
(High eTh with low K and eU). 

The predictive map with remote data and spatial coordinates 
has considerably increased the recovery compared to the 
geological map (78.7 %). This predictive map correlated very 
well with the geological map and proposed some changes, 
which can bring a considerable gain in the refinement in the 
boundaries of the geological units. However, this map brought 
little information about new lithological units; in other words, 
the insertion of the spatial correlation may have suppressed, 
besides noise, several features with possible geological logic. 
Furthermore, small units such as Pojuca Granite (PP3γpo), 
which have a dense cluster of sample training, seem to attract 
solutions that do not fit the unit.

7 Conclusions 

The machine learning methods allow bringing a new 
approach for data interpretation. Although the definition 
of the parameters can produce bias, this approach allows 
reproducing the predictive models since the parameters 
are defined. In this work, the Random Forest Algorithm 
showed the best performance among several methods of 
machine learning, in agreement with Cracknell and Reading 
(2014). The Random Forest make it possible to generate two 
predictive maps: one with remote data only, and another with 
remote data and a spatial constraint. The first one showed a 
recovery of 52.7 % concerning the geological map besides 
several possible new lithological units, however with a high 
noise content. The second one obtained a better recovery 
of 78.7 % with several suggestions in the reevaluation of the 
limit of several units; however, did not bring information about 
new lithologies. In fact, both Predictive maps with remote data 
only and with spatial coordinates have their advantages and 
disadvantages and need to be used together to enrich the 
geological map, especially in regions with scarce outcrops 
such as the Cinzento Lineament region.
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