# Journal of the Geological Survey of Brazil



# A scientometric study on Artificial Intelligence for landslide prediction: Trends, collaborations, and advances

Mallikarjun Kappi<sup>1\*</sup> Ghouse Modin Nabeesab Mamdapur<sup>2</sup> Mallikarjuna Bhovi<sup>3</sup> Suresh Jange<sup>4</sup>

## **Abstract**

This scientometric study analysed 1,834 publications (2009–2023) on artificial intelligence applications in landslide prediction, revealing rapid growth (26.66% annual citation rate) with an average of 45.80 citations per paper. Despite the increased number of publications, the citation impact has not increased proportionally. The top 25 authors contributed 50.87% of the total output, while international collaborations (42.42% of papers) drove progress, with China and Vietnam as key contributed to utput, while international collaborations (42.42% of papers) drove progress, with China and Vietnam as key contributed to utput, while international collaborations (42.42% of papers) drove progress, with China and Vietnam as key contributed to utput, while international collaborations (42.42% of papers) drove progress, with China and Vietnam as key contributed research (1,307 papers) generated 59,863 citations. Geology dominated the discipline, although agriculture achieved the highest citation impact. Q1 journals (e.g. Catena and Landslides) outperformed Q2 venues (e.g. Remote sensing) in terms of citations. Among the 227 highly cited papers (12.38% of the total), the average citation count was 215.1. The core themes included machine learning, landslide size optibility, and deep learning. The findings highlight Al's multidisciplinary potential of Al but undersor re the need for enhanced international collaboration, explainable Al for model transparency, and strategy so mitigate citation biases to maximise research impact.

#### Article Information

Publication type: Research papers Received 9 August 2025 Accepted 28 October 2025 Online pub. 6 November 2025 Editor ad hoc: Jessica G. Santos

Keywords:
Landslide prediction
Artificial intelligence
Machine learning
Scientometric analysis
Citation life cycle
International collaboration

\*Corresponding author Mallikarjun Kappi E-mail address: mkmallikarjun@gmail.com

# Accepted manuscript - Uncorrected pre-proof

This is a PDF file containing an unedited and non-definitive version of a manuscript that has been accepted for publication by the **Journal of the Geological Survey of Brazil – JGSB**, which serves to provide early visibility of the article. Being an uncorrected preproof version, errors may appear during the production process (language review, formatting and proof review), and these can affect the final content of the article and all legal disclaimers (<a href="https://jgsb.sgb.gov.br/index.php/journal/6">https://jgsb.sgb.gov.br/index.php/journal/6</a>).



<sup>&</sup>lt;sup>1</sup>Library and Information Centre, Government First Grade College, Hosapete-583201, Karnataka, India

<sup>&</sup>lt;sup>2</sup>Yenepoya (Deemed to be University), Department of Library and Information Science, Deralakatte, Mangalore-575018, Kari atka, add

<sup>&</sup>lt;sup>3</sup>Library and Information Centre, Government First Grade College for Women, Koppal-583231, Karnataka, India

<sup>&</sup>lt;sup>4</sup>Virtual Learning Resource Centre and Digital Library, Gulbarga University, Kalaburagi (Gulbarga) 585106, Karnatak 🕠

#### 1. Introduction

Landslides are among the most frequent and devastating natural hazards worldwide, leading to severe loss of life, property, and infrastructure. Therefore, understanding and predicting landslides is vital for effective disaster management and sustainable development within geoscientific research. In recent years, Artificial Intelligence (AI) has emerged as a transformative tool in landslide studies, integrating remote sensing (RS), machine learning (ML), and Geographic Information Systems (GIS) to enhance the detection, monitoring, and risk assessment accuracy (Vaiapury & Uma, 2025). Traditional approaches are increasingly being replaced by ML and deep learning techniques. which offer improved objectivity, efficiency, and predictive precision (Ajraoui et al., 2024; Kappi & B, 2024). Parallel to these technological advancements, scientometric analyses have gained prominence for evaluating the evolving landscape of Al applications in landslide prediction. By systematically examining publication trends, citation patterns, and research collaborations, scientometric studies have revealed growing global interest and methodological diversity in this field (Ahmad et al., 2025). They also help identify influential algorithms, such as Superposable Neural Networks and conventional ML models, that have achieved predictive accuracies ranging from 75% to 95% (Korup & Stolle, 2014). Such analyses not only highlight the scientific progress made but also underscore the interdisciplinary nature of this research, where geoscience, computer science, and environmental studies converge. Continued advancements will rely on integrating climate data, real-time monitoring, and advanced computational models to improve predictive reliability. Despite the promise of Al-driven approaches, challenges related to data heterogeneity and model validation persist thereby emphasising the need for sustained, collaborative, and avidencedriven research.

Building on this background, this study offers a comprehensive scientometric assessment of global research on the application of Al in landslide studies. Specifically, it aims to analyse publication trends and citation distributions to understand the overall growth and scholarly impact of this field. This study also seeks to identify the key research areas that define the intellectual landscape of Al-driven landslide research 'n addition, it examines the most productive and influential authors, institutions, and countries that contribute to this domain, along with the journals most commonly used to disseminate related findings. Furthermore, the citation history of highly intential papers was examined to trace the evolution of foun lational knowledge. This study also explores coauthorship patterns among authors, institutions, and countries, as well as journal co-citation networks, to reveal the underlying collaboration and communication structures. Finally, it aims to uncover the thematic patterns and intellectual foundations that characterise this area of enquiry.

Based on these objectives, this study provides a holistic perspective on the development, collaborative dynamics, and thematic evolution of Al applications in landslide research. Mapping the growth and structure of this emerging field contributes not only to the understanding of scientometric trends but also to advancing geoscientific knowledge in disaster prediction and risk management.

The application of AI in landslide prediction has transformed geohazard research by offering enhanced accuracy and dynamic modeling capabilities (Akanksha Sharma et al., 2024;

Amol Sharma et al., 2023). Machine learning techniques, including random forests and support vector machines, have become fundamental tools for landslide susceptibility mapping (Jiang et al., 2022; Kumar et al., 2017). Deep learning models, particularly Convolutional and Recurrent Neural Networks, further improve the predictive performance by capturing complex spatial and temporal patterns (Kappi & Mallikurjuna, 2024; Lokesh et al., 2025; Thirugnanam, 2023). Recent innovations have involved hybrid approaches that combine multiple AI techniques to address data limitations and improve robustness (Blasch et al., 2021). The integration of remote sensing data, such as Synthetic Aperture Radar (SAR) and Google Earth Engine, has enabled Tyramic landslide assessment by incorporating real-ime environmental variables (Li et al., 2022; Nocentini et al., 2023). Furthermore, knowledge graphs and spatiotemporal models enhance generalisation across diverse geological settings (Kainthura & Sharma, 2022). Despite these advancements, challenges persist, including data scalety, computational demands of deep learning models. and limited model transferability (Lima et al., 2022). To accress the gaps in quantitative analysis, this study system atically evaluated AI applications in landslide prediction from 12009 to 2023. Assessing trends and limitations provides a foundation for future research, emphasising the need for adar (iv a models, improved data sharing frameworks, and computationally efficient solutions. These efforts will strengthen Al's role of Al in sustainable landslide risk management.

# 2. Data source and methodology

Data for this study were systematically obtained from the Web of Science (WoS) Core Collection on 18 August 2024, which offers comprehensive coverage across 229 subject categories and 21,800 journals. The search strategy used Boolean operators (AND, OR) within the TOPIC (TS) field, encompassing titles, abstracts, author keywords, and keywords, to identify publications related to AI, landslides, and predictive modelling from 2004 to 2023. All indexed documents, including research articles, reviews, conference papers, book chapters, and editorials, were included to capture the full breadth of scholarly output. Retrieved records containing bibliographic and citation information were exported in plain-text format and analyzed using VOSviewer (version 1.6.18) and Bibliometrix (version 3.1) in R Studio (version 4.2.1). The citation impact was normalised using the Journal Citation Indicator (JCI) to ensure comparability across disciplines and publication years. The analysis comprised three main phases: (i) performance analysis to assess publication growth, citation impact, and leading contributors; (ii) science mapping to visualise collaboration and co-citation networks; and (iii) thematic and cluster analysis to identify key research trends and conceptual structures. The results from both software tools were crossvalidated to enhance the analytical reliability and interpretive robustness. Although the WoS Core Collection offers extensive and high-quality coverage, this study was limited by its reliance on a single database, which may have excluded relevant publications indexed elsewhere. In addition, citationbased metrics are subject to temporal and disciplinary biases. Despite these constraints, the methodological framework provides a reliable and reproducible foundation for evaluating global research trends in Al-driven landslide studies.

#### 3. Results and interpretation

Figure 1 presents key information on Al applications in landslide prediction research (2009-2023), revealing 1,834 documents across 326 sources that generated 89,242 citations with a significant annual growth rate of 26.66%. These publications, with an average age of 3.92 years and citation impact of 46.57 CPP, draw upon 56,016 references and are indexed through 3,994 author keywords and 2,133 Keywords Plus. Funding from 1,381 agencies supported 1,307 documents (71.3%), yielding 59,863 citations (average 45.80 CPP). The research community comprises 5,540 authors, with limited single-authored contributions (39 papers) and substantial collaborative patterns (average 5.12 co-authors per document), including significant international collaborations (42.42%). The corpus predominantly consisted of articles (96.3%), with smaller proportions of reviews, conference papers, and other formats. Notably, 12.4% of publications (227) achieved highly cited status, indicating their considerable influence within the field.

Figure 1: Main information about the data

# 3.1 Trends in publications, citation distribution, and funding agencies

Figure 2 and Table 1 present a year-wise analysis of Al research on landslide prediction, revealing a consistent upward trend in publication volume from 2009 (n = 14) to a peak in 2022 (n = 400), followed by a slight decline in 2023 (n = 383). Despite this output growth, the average CPP shows a declining trend, falling from over 100 in the early years, peaking at 155.04 in 2012 and falling to just 7.32 in 2023. This decrease reflects the time-dependent nature of citation accumulation because newer publications have had less exportunity to garner citations. Total citations peaked in 2020 at 14,529 but declined thereafter, even as publication numbers continued to rise, indicating that recent research has not yet achieved a substantial citation impact. Although highly cited papers represent only 12.4% of the top publications, they account for a disproportionate 547% of all citations, underscoring their significant role in advancing the field. In contrast, uncited papers (NCPs) emerge uniy after 2015, reaching a high of 39 in 2023 (10.2%), which may indicate challenges in visibility, dissemination, or relevance. However, usage metrics indicate increasing engagement with the literature: 2023 recorded the highest 180-day usage count (5,315) and contributed 12.5% to the total usage count (127,177) since 2013. This suggests that while recent publications may not yet reflect strong citation performance, they are attracting considerable reader interest, signaling their emerging importance in the scholarly community. The citation distribution (Table 2) further revealed a pronounced disparity in the influence of research. While 2.89% of papers (n = 53) remain uncited, a significant portion (29.66%; n = 544) has received only 1 to 9 citations, indicating limited academic impact. Conversely, papers with 50-99 citations (14.94%; n = 274) accounted for 19,693 citations, whereas those cited 100-499 times (11.78%; n = 216) accumulated 41,212 citations. Notably, 11 papers (0.60%) received between 500 and 1,118 citations, collectively contributing 7,614 total citations.

Of the 1,834 research papers, 1,307 (71.26%) received support from 1,381 funding agencies worldwide, with 59,863 citations and an average of 45.80 CPP. A total of 1,381 funding agencies supported 1,307 publications that received 59,863 citations with an average CPP of 45.80. Among them, the top 20 agencies (Table 3) funded 1,028 papers, indicating that most research in this field was supported by a few major funders. Most of these agencies are located in East Asia, especially China, Korea, and Japan. The National Natural Science Foundation of China (NSFC) leads with 437 papers and 14,839 citations (CPP = 33.96), reflecting its central role in promoting this research area. Other key Chinese funders, including the National Key Research and Development Program of China (n=157, CPP = 37.10), Fundamental Resourch Funds for Central Universities (n=59, CPP = 38.34), and China Postdoctoral Science Foundation (n=53, CPP = 17.42), also show strong support and impact. The Chinese Academy of Sciences stands out with a smaller output of 31 papers but a high CPP of 89.03, showing the influence of its funded work. Outside China, the National Research Foundation of Korea (n=30, CPP = 52.03) and the Ministry of Science and ICT, Korea (n=24, CPP = 58.21), highlight Korea's growing role in this area. The University of Technology Malaysia achieved the highest CPP (153.47), with only 19 papers indicating exceptional impact. European and international funders, such as the Austrian Scier ce Fund (CPP = 100.06) and UK Research Innovation (CPF = 61.29), contributed fewer papers, but with high citation raiss. The top 20 funding agencies together produced 47,417 citations with an average CPP of 46.13, slightly above the global average, showing that major funders not only support more research, but also help increase its visibility and impact.

Figure 2: Year-wise performance of publications and citation trends

Table 1: Year-wise performance of publications with various indicators

Table 2: Distribution of citations

Table 3: Top 20 funding agencies

#### 3.2 Major Research Areas

Figure 3 illustrates the disciplinary variations in productivity and impact within the research field. Geology emerged as the dominant field, producing 991 publications that accumulated 55,824 citations, yielding the highest average citation rate (CPP=56.33) among major disciplines. This demonstrates the established centrality of geology in landslide research. Environmental science and ecology followed with 639 publications and 26,720 citations (CPP=41.82), reflecting a substantial but comparatively lower impact. Engineering (508 publications, CPP=49.12) and Water Resources (426 publications, CPP=51.07) maintained strong representation, highlighting their technical contributions to prediction methodologies. Notably, Agriculture exhibits an exceptional citation impact (CPP=115.08) despite limited productivity (77 publications), suggesting that its specialised research generates disproportionate influence. Conversely. а specialised fields such as Telecommunications, Forestry,

and Public Environmental Occupational Health demonstrated minimal contributions to both output and impact. Peripheral disciplines, such as Astronomy and Construction, show negligible involvement, with both low publication counts and citation metrics.

Figure 3: Major research areas

#### 3.3 Most productive and impactful authors

A total of 5,333 authors contributed 1,834 papers on Albased landslide prediction, reflecting the broad and growing research community. However, authorship distribution indicates a strong concentration of contributions among a relatively small group of prolific researchers. The majority, 4,056 authors (76.05%), authored only one paper, while 1,107 authors (20.76%) contributed to 2-5 papers. A small group of 106 authors (1.99%) produced 6-10 papers, 39 (0.73%) published 11-19, and only 25 authors (0.47%) contributed 20-27 papers. The top 25 most productive authors (Table 4) collectively accounted for 933 papers, representing over half of the total output (50.87%) and accumulating 88,890 citations (20.40%), underscoring their substantial influence in this domain. Among them, Pradhan Biswajeet (University of Technology Sydney) ranked first with 77 papers, 31 HCPs, 10,612 citations, and h- and g-indices of 46 and 77, respectively, yielding a CPP of 137.82. He is closely followed by Dieu Tien Bui (University of South-Eastern Norway), with 70 papers, including 38 HCPs, 10,048 citations, and the highest CPP of 143.54, reflecting the exceptional impact of his research. Other prominent contributors include Binh Thai Pham (Gujarat Technological University) and Chen Wei (Xi'an University of Science and Technology), each with more than 65 papers and cvel 6,000 citations. Pourghasemi Hamid Reza (Shiraz Vaiversity) produced 56 papers with a CPP of 113.29, while Shahabi Himan (University of Kurdistan Hewler) authored 52 papers, garnering 6,176 citations. Collectively, these authors represent diverse international cohorts from Australia, Norway, India, China, Iran, and South Korea, emphasising the global nature of Al-driven landslide research. Together, they produced 315 HCPs, with an average CPP of 35.27, highlighting their pivotal role in advancing the development, visibility, and intellectual foundation of research  $\sigma_{\text{F}}$  F-based landslide predictions.

Table 4: Top 25 most productive and impactful authors

## 3.4 Most productive and impactful institutions

A total of 1,855 institutions contributed to 1,834 publications in this study. Of these, 1,178 institutions (63.50%) authored a single paper, 513 (27.65%) published between two and five, 71 (3.83%) produced six to ten, and 68 (3.66%) published 11 to 30 papers. Only 25 institutions (1.35%) contributed between 30 and 131 publications each. Notably, the top 25 institutions accounted for 1,424 publications (77.64%) and 98,905 citations (31.77%) (Figure 4). China and Vietnam dominate this group. The China University of Geosciences led with 131 publications and 6,835 citations (CPP: 52.18), followed by the Chinese Academy of Sciences with 110 publications and a CPP of 34.37. Some institutions exhibit a high impact despite a low output. For instance, the University of Kurdistan (Iraq) achieved a CPP of 111.18 with 61 publications, whereas Hanoi University of Mining

and Geology (Vietnam) recorded the highest CPP of 137.55 from 29 publications. Ton Duc Thang University and Duy Tan University, also in Vietnam, reported strong CPPs of 91.53 and 85.90, respectively. Nanjing Normal University (China) further exemplifies the high impact with a CPP of 119.74. Conversely, high publication volume does not guarantee influence; for example, Southwest Jiaotong University (China) published 32 papers but recorded a low CPP of 19.16, suggesting limited scholarly impact despite high productivity.

Figure 4: Top 25 most productive and impactful institutions

# 3.5 Most productive and impactful countries

A total of 96 countries contributed to 1,834 publications on Al-based landslide prediction. Of these, 23 countries (23.96%) published only one paper, 24 (25%) contributed 2-5, 14 (14.58%) produced 6-10, and 10 (10.42%) published 11-20 papers. The top 26 countries (27.08%) each contributed between 21 and 820 publications, and together accounted for 3,080 publications and 182,856 citations, exceeding 100% of the total, owing to international co-authorship (Table 5). China led in productivity with 820 publications but had a low international collaboration rate (5.98%), resulting in 30,977 citations and a CPP of 37.78. Vietnam, despite a smaller output (201), achieved a high CPP of 89.25 and a higher ICP rate (22.06%). Iran (290, CPP 78.08, ICP 17.59%) and India (248, CPP 48.84, ICP 19.35%) also made strong contributions. Malaysia, with 114 publications, achieved the highest CPP (113.95) and a notable ICP rate (27.19%), indicating high-quality collaborative research. Norway recorded the highest CPP (132.11) and 50% ICP rate, underscoring the value of international partnerships. Conversely, Pakistan and Bangladesh, despite their high ICP rates (87.10% and 113.04%, respectively), had lower CPPs (15.48 and 34.74, respectively), suggesting limited research impact. Similarly, Switzerland's moderate CPP (31.00), despite its high ICP (65.22%), suggests that collaboration quality or focus influences impact more than partnership frequency alone.

Table 5: Top 26 most productive and impactful countries

#### 3.6 Most preferred journals

The Journal Citation Indicator (JCI) enables the normalised evaluation of research impact across fields, accounting for variations in discipline, document type, and publication year. A JCI of 1.0 denotes average impact, with values above or below indicating a higher or lower influence, respectively. Although valuable, JCI alone is insufficient; combining it with other citation metrics offers a more comprehensive understanding of scholarly influence, especially considering field-specific citation practices (Collection, 2023). A total of 1,834 documents were published across 326 sources. The majority (272 journals, 83.44%) published only 1-5 papers each, accumulating 13,519 total citations. A smaller segment included 18 journals (5.52%) with 6-10 papers (9,144 citations), 14 journals (4.29%) with 11-20 papers (7,324 citations), and 16 journals (4.91%) with 21-50 papers (27,809 citations). Only six journals published between 51 and 89 papers, contributing 26,013 citations. Remote sensing led with 172 papers and 5,433 citations.

The top 25 journals published 1,146 papers (62.49%) and received 59,929 citations (67.15%) with an average CPP of 52.29 (Table 6). Notably, Remote Sensing (Q2, MDPI) and Natural Hazards (Q2, Springer) were prolific, whereas Q1 journals such as Catena (CPP: 124.05, 8,187 citations) and Landslides (CPP: 78.27, h-index: 33) showed a higher citation impact. Even Q3 journals, such as Environmental Earth Sciences (3,819 citations, CPP = 50.25), demonstrated a significant influence. Other Q2 and Q3 journals, including Geocarto International and Bulletin of Engineering Geology and the Environment, also exhibit strong citation metrics. Specialised Q1 journals, such as Geomatics, Natural Hazards & Risk, and Engineering Geology, reflected high CPPs, emphasising their relevance in landslide-focused geomatics and engineering research. In addition, multidisciplinary journals, such as Scientific Reports and Science of the Total Environment, showed substantial impact, reinforcing the interdisciplinary nature of Al-driven landslide studies. Journals like Sustainability and Sensors (Q2) also contributed significantly to both output and citation performance.

Table 6: Top 25 most preferred sources

#### 3.7 Highly cited papers

Among the 1,834 research papers, 227 (12.38%) were identified as highly cited, defined as those receiving 100 or more citations. These included 215 articles, 11 reviews, and one conference paper each. Citation data were retrieved from the Web of Science Core Collection covering the period from the year of publication to the and of August 2024. Collectively, these 227 papers, published across 63 journals by 1,179 authors, including ciont singleauthor publications, accumulated 48,826 chations, with an average of 215.1 CPP. Of these, 149 papers received between 100 and 200 citations, 68 received between 201 and 500 citations, and 10 were cited between 501 and 1,051. Notably, 151 of these papers were supported by various funding agencies. Figure 5 shows the citation beauty of the top 10 HCPs, revealing diverse patterns of influence. Reichenbach (2018) achieved a remarkable impact with 1,051 TC, peaking at 259 citations in 2023 before declining slightly to 150 in 2024. Bui's 2016 paper (TC = 889) experienced a steary rise in citations, peaking at 139 in 2020, before declining to 81 in 2024. Pourghasemi (2012) achieved 696 citations, with notable growth from 2014 and a peak of 83 in 2019, followed by a stabilisation. Liu's 2015 paper (TC = 688) exhibited rapid growth, peaking at 129 in 2020 but dropping sharply to 8 citations by 2024.

Similarly, Pradhan (2010) and Yilmaz (2009), with 683 and 656 citations, respectively, demonstrated consistent growth, peaking around 2020. Pradhan's paper reached 75 citations in 2019, while Yilmaz's paper peaked at 72 citations the same year, followed by gradual declines. Were's 2015 paper (TC = 545) also showed a steady rise, peaking at 88 citations in 2020. Yalcin (2011) and Stumpf (2011) garnered 522 and 511 citations, respectively, both peaking at 63 citations in 2019–2020 before plateauing. Goetz's 2015 paper (TC = 516) displayed a gradual upward trend, peaking at 99 citations in 2022, and subsequently declining to 52 in 2024.

Figure 5: Citations beauty of the top 10 HCPs

# 4. Visualisation of collaborations among countries, authors, institutions, and journals using VOSviewer and co-occurrence networks

VOSviewer is a useful tool to understand scientific collaboration by visually mapping co-authorship, institutional links, Country Collaboration, and citation patterns. This helps identify how researchers work together, which institutions are the most active, and which studies are the most frequently cited. These visualisations reveal key trends, highlight influential contributors, and show that knowledge spreads across various fields. By examining these networks, VOSviewer provides a better understanding of scientific trends and influential connections

Figure 6 shows the co-authorship network among the top 50 authors, which reveals four distinct clusters (Red, Green, Blue, and Yellow) with 459 collaborative links and a TLS of 1,930, indicating an extensive collaborative ecosystem. Cluster 1 Red, comprising 17 authors, is anchored by prolific contributors such as Caro Lee (n=40, TC=3,490, 31 links, 119 TLS) and Biswa ee. Pradhan (n=76, TC=10,565, 25 links, 94 TLS), who are central to this network. Supporting figures in this group include Saeid Janizadeh, Fatemeh Rezaie, and Alireza Arabameri all of whom exhibit robust publication and citation records with notable link strengths in the literature. Cluster 2 Green, with 13 authors, is dominated by Binh Thai Pham (n=70, TO=7,762, 32 links, 270 TLS), whose extensive international collaboration is reflected in his high TLS. This cluster also includes well-cited authors such as Nadhir Al-Ansari, Indra Prakash, and Romulus Costache. In the Blue cluster (Cluster 3), comprising 12 authors, Dieu Tien Bui (n=70, TC=10,048) and Ataollah Shirzadi (n=45, TC=4,639) demonstrated both high productivity and collaborative engagement, with TLS values of 193 and 237, respectively. The Yellow (cluster 4), although smaller with 8 authors, features influential researchers like Wei Chen (n=65, TC=6,460) and Haoyuan Hong (n=42, TC=4,992), indicating significant impact despite fewer collaborative ties.

Figure 6: Top 50 most collaborative authors

Figure 7 shows that the Country Collaboration network includes 96 countries, 51 of which meet the threshold of at least five publications, distributed across seven clusters with 517 collaborative links and a TLS of 2,941. China emerged as the leading contributor (n= 820 and TC= 30,977), indicating its dominance in the field. The United States, although ranking lower in terms of TP (n= 175), shows strong international collaboration with 42 links and a TLS of 320, reflecting its strategic partnerships. Vietnam's impact is notable, with (n=204 and TC= 18,207) supported by 40 links and a high TLS of 621, indicating both research productivity and collaborative intensity. Iran had the highest TLS (695), despite producing 290 papers, showcasing its broad and active collaboration network. India (n=248, TC=12,112) maintains a significant presence with 39 links and a TLS of 460. Countries such as South Korea (TLS 284), Italy (TLS 141), Japan, Norway, and Malaysia, demonstrated varying degrees of influence. Although they contribute fewer publications, their participation in high-impact research through established collaborations reflects a globally integrated research landscape.

Figure 7: Top 51 most collaborative countries

Figure 8 Institutional Collaboration Map visualises contributions from 1,855 institutions, of which 210 met the minimum threshold of five publications each. The top 50 institutions, distributed across five clusters, were connected through 628 links and a combined TLS of 2,645. Duy Tan University emerged as the most central institution with (n=108 and TC=9,277), 47 links, and the highest TLS of 429, reflecting its leadership in the domain. Ton Duc Thang University followed with (n=77 publications and TC=7,048), 42 links, and a TLS of 300, highlighting its significant research output and network. Institutions such as the Agricultural Research, Education, and Extension Organization (AREEO) and the University of Transport Technology demonstrated high collaboration efficiency, achieving TLS values of 152 and 220, respectively, despite moderate publication counts. The Korea Institute of Geoscience and Mineral Resources (KIGAM) also maintained an active profile (n=44, TC=3,365), 39 links, and a TLS of 173. Tarbiat Modares University and Sejong University further enriched the collaborative framework, with the former contributing (n=76) and a TLS of 223. The University of Kurdistan (n= 61, TC=6,782, TLS= 266) underscores the significance of regional institutions in global research. Institutions like Korea University and Shiraz University maintain considerable influence through strategic partnerships despite a comparatively lower volume of publications.

Figure 8: Top 50 most collaborative institutions

Figure 9 Journal Co-Citation Network Map comprises 326 journals, of which 38 met the inclusion threshold of at least 10 publications, distributed across four clusters with 64? links and a cumulative TLS of 13,901. Cluster 1 features leading journals such as Remote Sensing (n=172, TLS= 2,623) and Landslides (n=67, TLS= 1,611), which play a central rol and uisseminating key findings. Engineering Geology, Sensors, and Scientific Reports also contributed significantly, with strong co-citation links, reflecting their multidisciplinary relevance. Cluster 2 is dominated by Catena, which, despite having 66 publications, holds the highest (TLS= 2.732) highlighting its key role in shaping the intellectual structure of the field. Cluster 3 includes Natural Hazards (n= 89, TLS= 1,787) and Geomatics, Natural Hazards, and Risk (n=45, TLS= 1,016), indicating a sustained focus on risk modeling and hazard assessment. Cluster 4 features Science of the Total Environment (n= 30, TLS= 1,346), reflecting the journal's relevance in interdisciplinary research. The co-citation patterns underscore the dominance of geoscience and environmental science journals in Al-driven landslide research, indicating cross-pollination of techniques and theories from remote sensing, geology, and data science.

Figure 9: Top 38 most co-cited journals

Figure 10 shows the Keyword Co-occurrence network resulting from 1,834 publications, which identified 3,994 author keywords, with 78.62% (3,140 keywords) appearing only once, 653 keywords (16.35%) appearing 2–5 times, 104 keywords (2.60%) appearing 6–10 times, 64 keywords (1.60%) appearing 11–20 times, and 33 keywords (0.83%) appearing between 21 and 423 times. The analysis resulted in eight thematic clusters, encompassing 513 links and a TLS

of 1,947 links. Cluster 1 is characterised by high-frequency terms like "machine learning" (423 occurrences, TLS 517) and "landslide susceptibility" (243 times, TLS 270), indicating a strong focus on predictive modeling and spatial analysis. Cluster 2 is centred on modeling tools, with keywords such as "support vector machine" (71 times, TLS 127) and "geographic information system" (31 times, TLS 47), highlighting the role of GIS in susceptibility mapping. Cluster 3 reflects the integration of AI techniques, with terms like "artificial neural network" (49 times, TLS 78) and "artificial intelligence" (40 times, TLS 57). Cluster 4 highlights advanced imaging and computational techniques, notably "deep learning" (166 times, TLS 208) and "remote sensing" (113 times, TLS 234). Cluster 5 underscores algorithmic diversity, featuring "random forest" (141 times, TLS 229) and "logistic regression" (82 times, 145). Cluster 6 is focused on "landslide susceptibility mapping" (91 times, TLS 114), while Clusters 7 and 8 explore statistical modeling and risk evaluation (Table 7).

Figure 10: 60 Most occurred Author keywords

Table 7: Top 60 Visst Occurred Author keywords

#### 5. Discussion

Al research on landslide prediction has seen significant growth from 2009 to 2023, with 1,834 publications generating 89,242 citations. This increase is largely driven by advances in machine learning (ML) and Explainable AI (XAI), which have improved both model accuracy and interpretability. An annual growth rate of 26.66%, with 42.42% of studies involving international collaboration, reflects a concerted global effort to mitigate landslide risk. (Binu et al., 2024; Cheung et al., 2023). Despite this, the surge in publications, especially in 2022, coupled with a declining CPP, suggests a tradeoff between rapid research expansion and immediate impact, with newer studies still accumulating citations (Kappi et al., 2024).

Authorship analysis revealed a concentration of productivity among a small group of researchers, with 76.05% of the 5,333 authors contributing only one publication. By contrast, the top 25 authors produced 50.87% of the total output and garnered 88,890 citations, averaging 95.27 citations per publication (Meho & Akl, 2024). This trend of hyperprolific authorship is accompanied by significant international collaboration, underscoring the growing global network in AI research on landslide prediction (Jakab et al., 2024; Serpa et al., 2024).

Institutionally, a small number of institutions, mainly in China and Vietnam, dominate the field. The top 25 institutions accounted for 77.64% of the total publications but only 31.77% of the total citations, indicating a skewed distribution of research influence. For instance, the China University of Geosciences leads with 131 publications and a CPP of 52.18, whereas the University of Kurdistan, despite fewer publications, boasts a CPP of 111.18 (He et al., 2024). This shows that institutional output does not always correlate with citation impact.

International collaboration data reveal significant disparities in output and influence across different countries. China has 820 publications and 30,977 citations, but only 5.98% of its work involves international collaboration, reflecting high output but relatively low international engagement (AlShebli et al., 2024). In contrast, countries like Vietnam, with a higher CPP of 89.25 and 22.06% international collaborations, demonstrate

a greater research impact despite a lower output. Meanwhile, Malaysia and Norway, with CPPs of 113.95 and 132.11, respectively, illustrate the role of collaboration in enhancing research impact, although collaboration alone is not a quarantee of influence, as seen in the lower CPPs of Pakistan and Bangladesh (Alamah et al., 2023).

A few high-impact journals dominate the field regarding publication venues. The top 25 journals accounted for 62.49% of publications and 67.15% of citations, with "Remote Sensing" and "Natural Hazards" contributing significantly despite being in Q2. Higher-impact Q1 journals, such as "Catena" and "Landslides", show even stronger citation metrics, with "Catena" achieving a CPP of 124.05 (Gould, 2023). Multidisciplinary and specialised journals like "Scientific Reports" and "Engineering Geology" also demonstrate their importance in bridging interdisciplinary research with practical applications in Aldriven landslide prediction (Moustafa, 2024).

In terms of funding, China's dominance is clear, with the National Natural Science Foundation of China leading the contributions (23.83%), followed by the National Key Research and Development Program (4.63%). International support, such as that from the National Research Foundation of Korea highlights global investment in Al-driven landslide risk assessment, contributing to advancements in machine learning and XAI techniques for early warning systems (Kappi et al., 2021; Vaishya, Kappi, et al., 2024).

The analysis of keyword trends further emphasises the focus on AI techniques like "machine learning" and "landslide susceptibility," along with advanced methodologies such as "support vector machine" and "deep learning." However, the integration of XAI remains. crucial for ensuring that these models are interpretable and applicable to real-world challenges (Mallikarjuna et al., 2024; Vaishya, Gupta, et al., 2024).

#### 6. Conclusion

This comprehensive analysis lei's three principal recommendations for advancing AI-driven landslide-prediction research. First, the field must pricritise quality over quantity by establishing standardised validation frameworks for machine learning applications in geohazard assessments, particularly for models claiming operational readiness (Singha et al., 2024). The current imbalance between methodological sophistication (evident in the 'deep learning' and 'support vector machine' keyword clusters, and practical implementation (the smaller 'risk assessment' cluster) suggests the need for stronger collaboration between computer scientists and geotechnical practitioners. Second, Vietnam's research growth pattern demonstrates how international collaboration serves as an impact multiplier, as evidenced by its elevated citation performance despite a moderate publication output. This success underscores the potential benefits of expanding collaborative networks through structured North-South and South-South cooperation frameworks. Such strategic alliances would counterbalance the current geographic concentration of research influence in dominant regions and enhance contextsensitive solutions for localised landslide challenges.

Third, the growing emphasis on explainable AI (XAI) in keyword trends must translate into concrete practices, as model interpretability remains critical for stakeholder adoption and ethical deployment. Future research should employ mixedmethods approaches to complement bibliometric insights with qualitative data from policymakers and practitioners, particularly in under-represented high-risk regions. As climate change amplifies landslide frequency and severity (IPCC, 2023), the future of this field depends on its ability to balance technical innovation with practical deployability. Addressing this challenge will require sustained investment in interdisciplinary training, open data sharing and equitable collaboration frameworks. While this study provides a robust foundation for understanding the evolution of the field, future work should address its limitations by incorporating broader data sources, particularly patent databases and conducting more nuanced analyses of citation dynamics.

## **Authorship credits**

| Author | Α | В | (8) | D | E | F |
|--------|---|---|-----|---|---|---|
| MK     |   | 1 | 5.  |   |   |   |
| GNMN   |   | 0 |     |   |   |   |
| MB     | X |   |     |   |   |   |
| SJ     | 0 |   |     |   |   |   |

- A Study design/ Conceptualization B Investigation/ Data acquisition
- C Data Ir ter, retation/ Validation E - Review/Laiting
- **D** Writing F - Supervision/Project administration

## References

Ahmad, S., Kasbun, R., & Ab Rahman, N. F. (2025). Bibliometric Analysis Landslide Susceptibility using Artificial Intelligence in Geospatial: A Comprehensive Review. Semarak International Journal of Machine https://doi.org/10.37934/sijml.5.1.2745a 27-45. Learning, 5(1),

Ajraoui, A., Chakiri, S., Mansouri, H., Benhaddou, M., Laassilia, O., & Saouabe, A. (2024). Landslide Prediction Methods: A Comparative Overview of Traditional and Al-Based Decision-Making Approaches. 2024 International Conference on Decision Aid Sciences and Applications (DASA), 1-5. https://doi.org/10.1109/DASA63652.2024.10836546

Alamah, Z., AlSoussy, I., & Fakih, A. (2023). The Role of International Research Collaboration and Faculty Related Factors in Publication Citations: Evidence from Lebanon. In Economies (Vol. 11, Issue 3). https://doi.org/10.3390/economies11030090

AlShebli, B., Memon, S. A., Evans, J. A., & Rahwan, T. (2024). China and the U.S. produce more impactful AI research when collaborating together. Scientific Reports, 14(1), 1-23. https://doi.org/10.48550/ arXiv.2304.11123

Binu, K. E., Anoopkumar, L. T., Sunil, M., Jose, M., & Preetha, K. G. (2024). Dynamic Landslide Prediction, Monitoring, and Early Warning with Explainable AI: A Comprehensive Approach. 2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC), 960-965. https://doi.org/10.1109/ICAAIC60222.2024.10575330

Blasch, E., Pham, T., Chong, C.-Y., Koch, W., Leung, H., Braines, D., & Abdelzaher, T. (2021). Machine Learning/Artificial Intelligence for Sensor Data Fusion-Opportunities and Challenges. IEEE Aerospace and Electronic Systems Magazine, 36(7), 80-93. https://doi.org/10.1109/ MAES.2020.3049030

Cheung, R. W. M., Li, H. W. M., & Chu, E. K. H. (2023). Exploratory Study of using Artificial Intelligence for Landslide Predictions. Proceedings of The HKIE Geotechnical Division 43rd Annual Seminar: Towards a Smart-Green-Resilient Geo-Future for World-Class City Development" (GDAS2023), 215–229. https://doi.org/10.21467/proceedings.159

- Collection, S. C. (2023). Introducing the Journal Citation Indicator. In Clarivate.
- He, R., Zhang, W., Dou, J., Jiang, N., Xiao, H., & Zhou, J. (2024). Application of artificial intelligence in three aspects of landslide risk assessment: A comprehensive review. Rock Mechanics Bulletin, 3(4), 100144. https://doi.org/https://doi.org/10.1016/j.rockmb.2024.100144
- IPCC. (2023). Section 4: Near-Term Responses in a Changing Climate. In Climate Change 2023: Synthesis Report. <a href="https://doi.org/10.59327/">https://doi.org/10.59327/</a> IPCC/AR6-9789291691647
- Jakab, M., Kittl, E., & Kiesslich, T. (2024). How many authors are (too) many? A retrospective, descriptive analysis of authorship in biomedical publications. Scientometrics, 129(3), 1299–1328. <a href="https://doi.org/10.1007/s11192-024-04928-1">https://doi.org/10.1007/s11192-024-04928-1</a>
- Jiang, S., Ma, J., Liu, Z., & Guo, H. (2022). Scientometric Analysis of Artificial Intelligence (AI) for Geohazard Research. Sensors, 22(20). https://doi.org/10.3390/s22207814
- Kainthura, P., & Sharma, N. (2022). Hybrid machine learning approach for landslide prediction, Uttarakhand, India. Scientific Reports, 12(1), 20101. https://doi.org/10.1038/s41598-022-22814-9
- Kappi, M., & Mallikarjuna, B. (2024). Artificial intelligence and machine learning for disaster prediction: a scientometric analysis of highly cited papers. Natural Hazards. <a href="https://doi.org/https://doi.org/10.1007/s11069-024-06616-y">https://doi.org/https://doi.org/10.1007/s11069-024-06616-y</a>
- Kappi, M., Chaman Sab, M., & Biradar, B. S. (2021). Measuring research productivity of "Universities with Centre with Potential for Excellence in Particular Area (CPEPA) status" in Karnataka state. DESIDUC Journal of Library & Information Technology, 41(5), 43. <a href="https://doi.org/10.14429/djlit.41.5.16507">https://doi.org/10.14429/djlit.41.5.16507</a>
- Kappi, M., Mamdapur, G. N., Biradar, B. S., & Bhovi, S. Y. (2024). Growth and Trends of Geometrical Optics Research Using Scientometrics Indicators. Science & Technology Libraries, 43(2) 205–318. <a href="https://doi.org/10.1080/0194262X.2024.2360975">https://doi.org/10.1080/0194262X.2024.2360975</a>
- Korup, O., & Stolle, A. (2014). Landslide prediction from machine learning. Geology Today, 30(1), 26–33. <a href="https://doi.org/10.1111/GTO.12034">https://doi.org/10.1111/GTO.12034</a>
- Kumar, D., Thakur, M., Dubey, C. S. & Shukla, D. P. (2017). Landslide susceptibility mapping & praction using Support Vector Machine for Mandakini River Basin Cat. wal Himalaya, India. Geomorphology, 295, 115–125. https://doi.org/https://doi.org/10.1016/j.geomorph.2017.06.012
- Li, B., Liu, K., Warg, M., He, Q., Jiang, Z., Zhu, W., & Qiao, N. (2022). Global Dynamic Rainfall-Induced Landslide Susceptibility Mapping Using Machine Learning. In Remote Sensing (Vol. 14, Issue 22). https://doi.org/10.3390/rs14225795
- Lima, P., Steger, S., Glade, T., & Murillo-García, F. G. (2022). Literature review and bibliometric analysis on data-driven assessment of landslide susceptibility. Journal of Mountain Science, 19(6), 1670– 1698. https://doi.org/10.1007/s11629-021-7254-9

- Mallikarjuna, B., Kappi, M., & Taj, S. (2024). Bibliometric Analysis of the Journal of Big Data: Trends, Impact, and Future Directions. Shanlax International Journal of Arts, Science and Humanities, 12(1), 100–114. <a href="https://doi.org/10.34293/sijash.v12i1.7762">https://doi.org/10.34293/sijash.v12i1.7762</a>
- Meho, L., & Akl, E. (2024). Using Bibliometrics to Detect Unconventional Authorship Practices and Examine Their Impact on Global Research Metrics, 2019-2023. In Preprints. Preprints. <a href="https://doi.org/10.20944/">https://doi.org/10.20944/</a> preprints202407.0691.v1
- Moustafa, K. (2024). Why most journal impact factors are false. OSF Preprints, 1–7. https://doi.org/10.31219/osf.io/8q67q
- Nocentini, N., Rosi, A., Segoni, S., & Fanti, R. (2023). Towards landslide space-time forecasting through machine learning the influence of rainfall parameters and model setting. Frontiers in Earth Science, Volume 11. <a href="https://doi.org/10.3389/feart.2023.152.30">https://doi.org/10.3389/feart.2023.152.30</a>
- Lokesh, P., Mahesh, C., Mathew, A., & Sne'ar, P. R. (2025). Machine learning and deep learning-based lend side susceptibility mapping using geospatial techniques in Vayanad, Kerala state, India. HydroResearch, 8, 113–126. https://doi.org/https://doi.org/10.1016/j. hydres.2024.10.001
- Serpa, S., Wang, F., & Zhou L. (2024). Artificial Intelligence as Author of Scientific Publication & Science Insights, 44(1), 1215–1219. https://doi.org/10.15354/si.?4.re966
- Sharma, Akanksha, Paj Chopra, S., Gajanan Sapate, S., Arora, K., Khalid Imam Rahria ii M., Jha, S., Ahmad, S., Ezaz Ahmed, M., Abdeljaber, H. A. M. & Nazeer, J. (2024). Artificial Intelligence Techniques for Lands iid. s Prediction Using Satellite Imagery. IEEE Access, 12(August), 117318–117334. https://doi.org/10.1109/ACCESS.2024.3446037
- Sharma, Amol, Chander, P., Estifanos Lemma, G., & and Sharma, R. (2023). An artificial intelligence based framework to analyze the landside risk of a mountainous highway. Geocarto International, 38(1), 2186494. https://doi.org/10.1080/10106049.2023.2186494
- Singha, C., Rana, V. K., Pham, Q. B., Nguyen, D. C., & Łupikasza, E. (2024). Integrating machine learning and geospatial data analysis for comprehensive flood hazard assessment. Environmental Science and Pollution Research, 31(35), 48497–48522. <a href="https://doi.org/10.1007/s11356-024-34286-7">https://doi.org/10.1007/s11356-024-34286-7</a>
- Thirugnanam, H. (2023). Deep Learning in Landslide Studies: A Review. In Progress in Landslide Research and Technology (Vol. 1, Issue 2, pp. 247–255). Springer International Publishing. <a href="https://doi.org/10.1007/978-3-031-18471-0\_20">https://doi.org/10.1007/978-3-031-18471-0\_20</a>
- Vaiapury, S., & Uma, V. (2025). Artificial Intelligence-Based Landslide Prediction Using Remote Sensing Data. In J. Garwi & R. Masengu (Eds.), Al and Ecological Change for Sustainable Development (pp. 217–257). IGI Global Scientific Publishing. <a href="https://doi.org/10.4018/979-8-3373-0680-3.CH008">https://doi.org/10.4018/979-8-3373-0680-3.CH008</a>
- Vaishya, R., Gupta, B. M., Kappi, M. M., Mamdapur, G. N., & Vaish, A. (2024). Global research output and highly-cited publications on prosthetic joint infections: A bibliometric analysis (2003-2022). Journal of Clinical Orthopaedics and Trauma, 50, 102373. <a href="https://doi.org/10.1016/j.jcot.2024.102373">https://doi.org/10.1016/j.jcot.2024.102373</a>
- Vaishya, R., Kappi, M. M., Gupta, B. M., Mamdapur, G. N., & Vaish, A. (2024). Global Stem Cell Research in Orthopaedics: A Bibliometric Study from 1995 to 2020. Indian Journal of Orthopaedics, 58(7), 876–886. https://doi.org/10.1007/s43465-024-01160-0



FIGURE 1. Main information about the data.

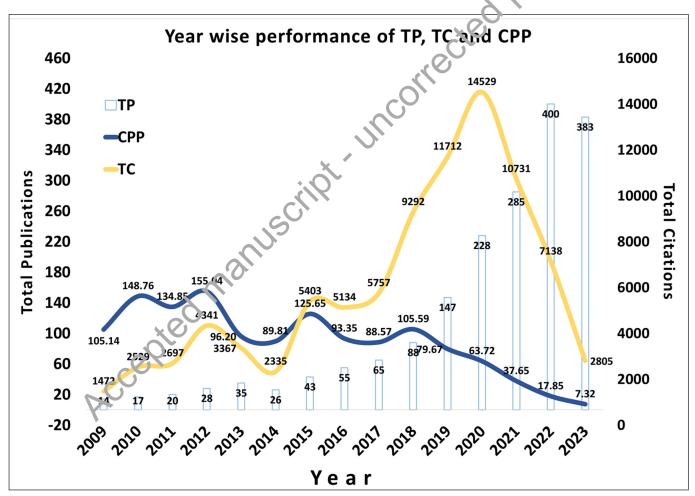


FIGURE 2. Year-wise performance of publications and citation trends.

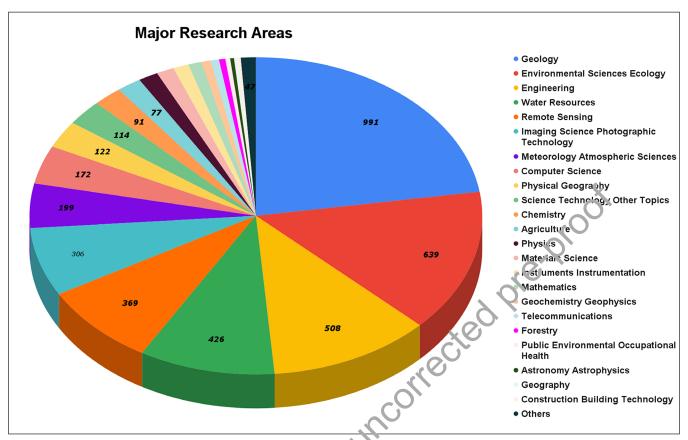


FIGURE 3. Major research areas

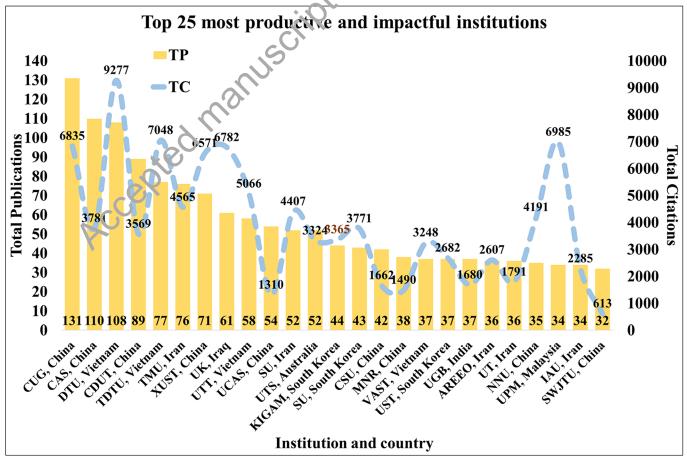


FIGURE 4. Top 25 most productive and impactful institutions

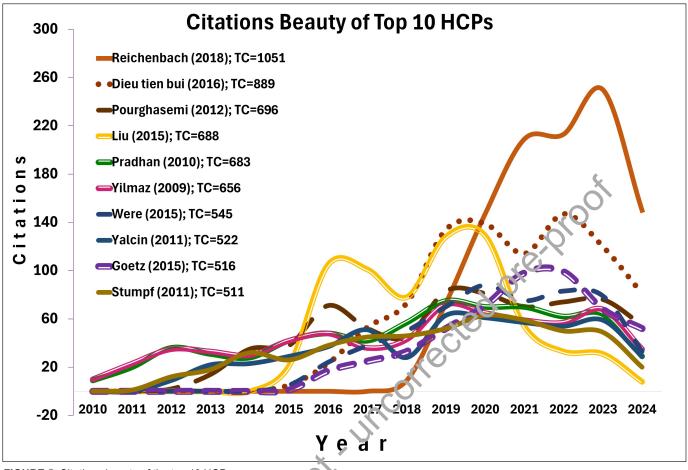


FIGURE 5. Citations beauty of the top 10 HCPs

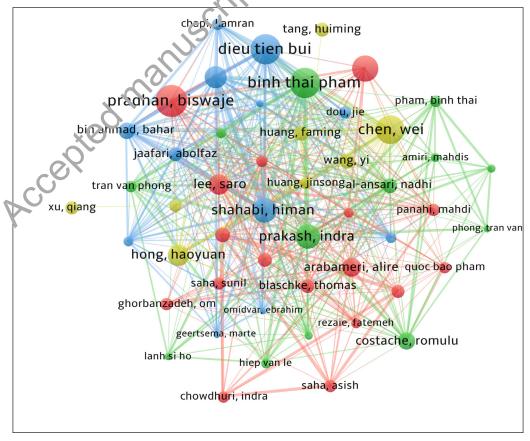


FIGURE 6: Top 50 most collaborative authors

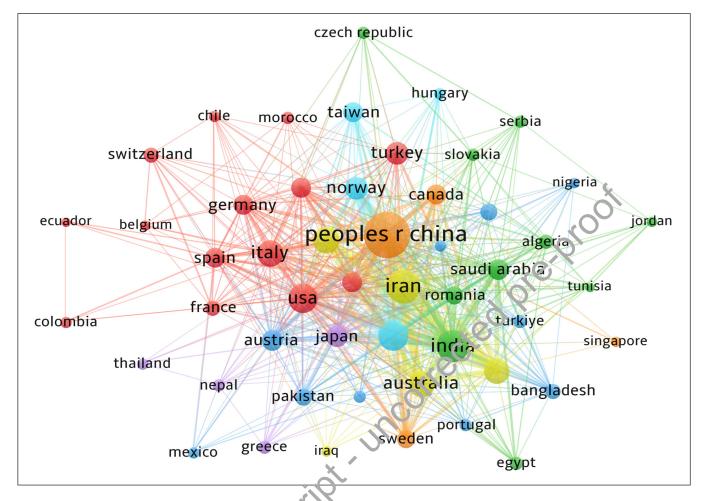


FIGURE 7. Top 51 most collaborative countries

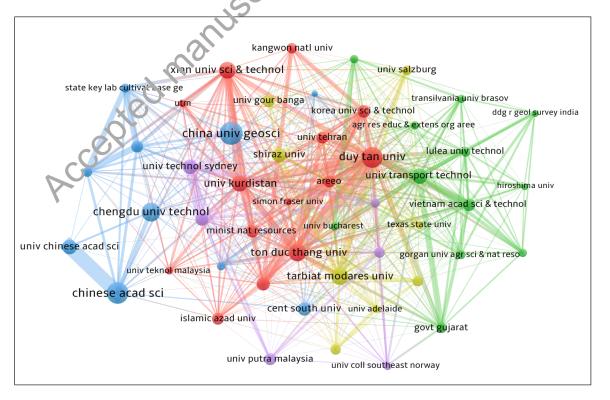
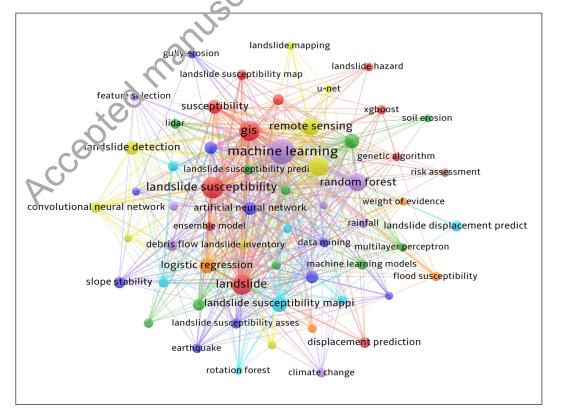


FIGURE 8. Top 50 most collaborative institutions

| geocarto international                                        |
|---------------------------------------------------------------|
| isprs international journal of ieee access                    |
| journal of hydrology journal of environmental manag           |
| geomatics natural hazards & ri                                |
| frontiers in earth science applied sciences-basel             |
| water                                                         |
| geoscience frontiers forests landslides                       |
| remote sensing ieee journal of selected topic                 |
| natural hazards                                               |
| science of the total environme geomorphology                  |
| ieee transactions on geoscienc                                |
| environmental earth sciences land                             |
| engineering geology journa! of mountain science               |
| arabian journal of geosciences frontiers in environmental sci |
| natural hazards and earth syst                                |

FIGURE 9. Top 38 most co-cited journals



**TABLE 1.** Year-wise performance of publications with various indicators.

| Year  | ТР   | тс    | СРР    | NCP | НСР | НСР ТС | Usage Count (180<br>Days) | Usage Count (Since 2013) |
|-------|------|-------|--------|-----|-----|--------|---------------------------|--------------------------|
| 2009  | 14   | 1472  | 105.14 | 0   | 3   | 986    | 15                        | 483                      |
| 2010  | 17   | 2529  | 148.76 | 0   | 6   | 2118   | 41                        | 1217                     |
| 2011  | 20   | 2697  | 134.85 | 0   | 7   | 2203   | 53                        | 1411                     |
| 2012  | 28   | 4341  | 155.04 | 0   | 13  | 3892   | 49                        | 2292                     |
| 2013  | 35   | 3367  | 96.20  | 0   | 10  | 2529   | 115                       | 2806                     |
| 2014  | 26   | 2335  | 89.81  | 0   | 6   | 1403   | 97                        | 2595                     |
| 2015  | 43   | 5403  | 125.65 | 2   | 16  | 4457   | 233                       | 3976                     |
| 2016  | 55   | 5134  | 93.35  | 1   | 17  | 3702   | 225                       | 4177                     |
| 2017  | 65   | 5757  | 88.57  | 0   | 20  | 3719   | 258                       | 5080                     |
| 2018  | 88   | 9292  | 105.59 | 0   | 29  | 6788   | 770                       | 9329                     |
| 2019  | 147  | 11712 | 79.67  | 1   | 41  | 6774   | 965                       | 13182                    |
| 2020  | 228  | 14529 | 63.72  | 1   | 35  | 6492   | 1921                      | 19022                    |
| 2021  | 285  | 10731 | 37.65  | 1   | 23  | 3627   | 2100                      | 22356                    |
| 2022  | 400  | 7138  | 17.85  | 8   | 1   | 136    | 3718                      | 23302                    |
| 2023  | 383  | 2805  | 7.32   | 39  | 0   | 0      | 5315                      | 15949                    |
| Total | 1834 | 89242 | 48.66  | 53  | 227 | 48816  | 16565                     | 127177                   |

TP= Total Publications; TC= Total Citations; CPP= Citations per Papers; NCP= Uncited Papers; HCP= Highly Cited Papers; HCP= TC= Highly Cited Papers

**TABLE 2.** Distribution of citations

| Number of Citations | Number of Papers (%) | Total Citations |
|---------------------|----------------------|-----------------|
| Uncited             | 53 (2.09)            | 0               |
| 1-9                 | 544 (29.66)          | 2577            |
| 10-19               | 298 (16.25)          | 4166            |
| 20-29               | 200 (10.91)          | 4894            |
| 30-39               | 137 (7.47)           | 4674            |
| 40-49               | 101 (5.51)           | 4412            |
| 50-99               | 274 (14.94)          | 19693           |
| 100-499             | 216 (11.78)          | 41212           |
| 500-1118            | 11 (0.60)            | 7614            |
| Total               | 1834 (100)           | 89242           |

**TABLE 3.** Top 20 funding agencies

| unding Agency                                                         | TP   | тс    | СРР    |
|-----------------------------------------------------------------------|------|-------|--------|
| ational Natural Science Foundation of China                           | 437  | 14839 | 33.96  |
| ational Key Research Development Program of China                     | 157  | 5825  | 37.10  |
| ındamental Research Funds for The Central Universities                | 59   | 2262  | 38.34  |
| nina Postdoctoral Science Foundation                                  | 53   | 4103  | 77.42  |
| ninese Academy of Sciences                                            | 31   | 2760  | 89.03  |
| ational Research Foundation of Korea                                  | 30   | 1561  | 52.03  |
| ational Basic Research Program of China                               | 29   | 1936  | 56.76  |
| nina Scholarship Council                                              | 27   | 1898  | 70.30  |
| inistry of Science and ICT, Korea                                     | 24   | 1397  | 58.21  |
| niversity of Technology Malaysia                                      | 19   | 2916  | 153.47 |
| ustrian Science Fund                                                  | 18   | 1801  | 100.06 |
| inistry of Education, Culture, Sports, Science and Technology, Japan  | 17   | 1203  | 70.76  |
| K Research Innovation                                                 | 1    | 1042  | 61.29  |
| ong Kong Research Grants Council                                      | H    | 670   | 39.41  |
| atural Science Foundation of Hunan Province                           | 17   | 148   | 8.71   |
| ational Science Foundation                                            | 16   | 593   | 37.06  |
| uropean Union                                                         | 16   | 372   | 23.25  |
| pan Society for The Promotion of Science                              | 15   | 798   | 53.20  |
| etnam National Foundation for Science and Technology Development      | 15   | 798   | 53.20  |
| ng Saud University                                                    | 14   | 495   | 35.36  |
| otal of 20 Funding Agencies                                           | 1028 | 47417 | 46.13  |
| otal of 1381 Funding Agencies                                         | 1307 | 59863 | 45.80  |
| P= Total Publications; TC= Total Citations; CPP= Citations per Papers |      |       |        |

**TABLE 4.** Top 25 most productive and impactful authors

| Author                 | Affiliation                                                                | ТР  | НСР | TC.   | СРР    | h_index | g_index |
|------------------------|----------------------------------------------------------------------------|-----|-----|-------|--------|---------|---------|
| Pradhan Biswajeet      | University of Technology Sydney, Australia                                 | 77  | 31  | 0612  | 137.82 | 46      | 77      |
| Dieu Tien Bui          | University of South-Eastern Norway, Norway                                 | 70  | 38  | 10048 | 143.54 | 58      | 70      |
| Binh Thai Pham         | Gujarat Technological University, India                                    | 70  | 23  | 7762  | 110.89 | 52      | 70      |
| Chen Wei               | Xi'an University of Science and Technology, China                          | 66  | 28  | 6460  | 99.38  | 46      | 65      |
| Pourghasemi Hamid Reza | Shiraz University, Iran                                                    | 53  | 21  | 6344  | 113.29 | 37      | 56      |
| Shahabi Himan          | University of Kurdistan Hewler, Iraq                                       | 52  | 25  | 6176  | 118.77 | 44      | 52      |
| Prakash Indra          | Bhaskaracharya Institute for Space Applications and Geo-Informatics, India | 51  | 16  | 4667  | 91.51  | 35      | 51      |
| Shirzadi Ataollah      | University of Kurdistan Hewler, Iraq                                       | 46  | 20  | 4686  | 101.87 | 41      | 46      |
| Hong Haoyuan           | Nanjing Normal University, China                                           | 42  | 21  | 4992  | 118.86 | 35      | 42      |
| Lee Saro               | Korea Institute of Geoscience and Mineral Resources (KIGAM), South Korea   | 41  | 9   | 3537  | 86.27  | 30      | 41      |
| Arabameri Alireza      | Tarbiat Modares University, Iran                                           | 34  | 5   | 1510  | 44.41  | 21      | 34      |
| Costache Romulus       | Transilvania University of Brasov, Romania                                 | 30  | 2   | 1236  | 41.20  | 17      | 30      |
| Bin Ahmad Baharin      | University of Technology Malaysia, Malaysia                                | 28  | 17  | 3540  | 126.43 | 27      | 28      |
| Pal Subodh Chandra     | University of Burdwan, India                                               | 25  | 1   | 829   | 33.16  | 18      | 25      |
| Wang Yi                | China University of Geosciences, China                                     | 24  | 7   | 1766  | 73.58  | 17      | 24      |
| Rahmati Omid           | Ton Duc Thang University, Vietnam                                          | 24  | 7   | 1762  | 73.42  | 19      | 24      |
| Huang Faming           | Nanchang University, China                                                 | 24  | 6   | 2101  | 87.54  | 21      | 24      |
| Al-Ansari Nadhir       | Lulea University of Technology, Sweden                                     | 24  | 4   | 1441  | 60.04  | 15      | 24      |
| Jaafari Abolfazl       | AREEO, Research Institute of Forests and Rangolands, Iran                  | 23  | 7   | 1903  | 82.74  | 19      | 23      |
| Blaschke Thomas        | University of Salzburg, Austria                                            | 23  | 6   | 1997  | 86.83  | 22      | 23      |
| Tang Huiming           | China University of Geosciences, China                                     | 22  | 1   | 977   | 44.41  | 17      | 22      |
| Xu Chong               | Institute of Geology China Earthquake Administration, China                | 21  | 6   | 1549  | 73.76  | 15      | 21      |
| Xu Qiang               | China Geological Survey, Crina                                             | 21  | 1   | 835   | 39.76  | 15      | 21      |
| Panahi Mahdi           | Kangwon National University, South Korea                                   | 20  | 6   | 1348  | 67.40  | 14      | 20      |
| Chakrabortty Rabin     | University of Burdwan, India                                               | 20  | 1   | 812   | 40.60  | 16      | 20      |
| Total of 25 authors    |                                                                            | 933 | 315 | 88890 | 95.27  |         |         |

TP= Total Publications; HCP= Highly Cited Papers; TC= Total Citations; CPP= Citations per Papers

**TABLE 5.** Top 26 most productive and impactful countries

| Country      | ТР  | ICP   | % ICP  | тс    | СРР    |
|--------------|-----|-------|--------|-------|--------|
| China        | 820 | 49    | 5.98   | 30977 | 37.78  |
| Iran         | 290 | 51    | 17.59  | 22644 | 78.08  |
| India        | 248 | 48    | 19.35  | 12112 | 48.84  |
| Vietnam      | 204 | 45    | 22.06  | 18207 | 89.25  |
| USA          | 175 | 52    | 29.71  | 7672  | 43.84  |
| South Korea  | 138 | 42    | 30.43  | 9275  | 67.21  |
| Italy        | 132 | 44    | 33.33  | 7901  | 59.86  |
| Australia    | 131 | 32    | 24.43  | 8464  | 64.61  |
| Malaysia     | 114 | 31    | 27.19  | 12990 | 113.95 |
| Turkey       | 79  | 24    | 30.38  | 7639  | 96.70  |
| Norway       | 74  | 37    | 50.00  | 9776  | 132.11 |
| Japan        | 69  | 36    | 52.17  | 4551  | 65.96  |
| Saudi Arabia | 63  | 39    | o1.90  | 2765  | 43.89  |
| Austria      | 59  | 31 CC | 52.54  | 4679  | 79.31  |
| England      | 54  | 29    | 53.70  | 4047  | 74.94  |
| Spain        | 53  | 33    | 62.26  | 2194  | 41.40  |
| Germany      | 52  | 32    | 61.54  | 3454  | 66.42  |
| Netherlands  | 20  | 37    | 74.00  | 2817  | 56.34  |
| Canada       | 49  | 24    | 48.98  | 2488  | 50.78  |
| Taiwan       | 49  | 16    | 32.65  | 1957  | 39.94  |
| Sweden       | 36  | 25    | 69.44  | 2025  | 56.25  |
| Romania      | 35  | 30    | 85.71  | 1451  | 41.46  |
| Pakistan     | 31  | 27    | 87.10  | 480   | 15.48  |
| Brazil       | 29  | 14    | 48.28  | 779   | 26.86  |
| Bangladesh   | 23  | 26    | 113.04 | 799   | 34.74  |
| Switzerland  | 23  | 15    | 65.22  | 713   | 31.00  |

TP= Total Publications; ICP= International Collaborative Papers; TC= Total Citations; CPP= Citations per Papers

**TABLE 6.** Top 25 most preferred sources

| Source Name                                                                      | JCI (2023) | Publisher                                      | Quartile | TP  | тс   | CPP    | h_index | g_index |
|----------------------------------------------------------------------------------|------------|------------------------------------------------|----------|-----|------|--------|---------|---------|
| Remote Sensing                                                                   | 0.97       | MDPI                                           | Q2       | 172 | 5433 | 31.59  | 35      | 64      |
| Natural Hazards                                                                  | 0.82       | Springer                                       | Q2       | 89  | 4426 | 49.73  | 34      | 64      |
| Environmental Earth Sciences                                                     | 0.63       | Springer                                       | Q3       | 73  | 3819 | 50.25  | 29      | 60      |
| Geocarto International                                                           | 0.74       | Taylor & Francis                               | Q2       | 69  | 2199 | 31.87  | 26      | 45      |
| Landslides                                                                       | 1.63       | Springer                                       | Q1       | 67  | 5244 | 78.27  | 33      | 67      |
| Catena                                                                           | 1.47       | Elsevier                                       | 01       | 66  | 8187 | 124.05 | 44      | 66      |
| Bulletin of Engineering Geology and the Environment                              | 0.86       | Springer                                       | 23       | 55  | 2138 | 38.87  | 24      | 45      |
| Geomatics Natural Hazards & Risk                                                 | 1.1        | Taylor & Francis                               | Q1       | 45  | 1914 | 42.53  | 22      | 43      |
| Applied Sciences-Basel                                                           | 0.56       | MDPI                                           | Q2       | 45  | 1555 | 34.56  | 22      | 38      |
| Engineering Geology                                                              | 1.85       | Elsevier                                       | Q1       | 42  | 3399 | 80.93  | 31      | 42      |
| Sustainability                                                                   | 0.68       | MDPI                                           | Q2       | 41  | 949  | 23.15  | 14      | 30      |
| Sensors                                                                          | 0.87       | MDPI                                           | Q2       | 40  | 1169 | 29.23  | 18      | 33      |
| Nater                                                                            | 0.67       | MDPI                                           | Q2       | 39  | 816  | 20.92  | 14      | 27      |
| Frontiers In Earth Science                                                       | 0.58       | Frontiers Media                                | Q3       | 34  | 353  | 10.38  | 10      | 17      |
| Science of the Total Environment                                                 | 1.62       | Elsevier                                       | Q1       | 30  | 4540 | 151.33 | 26      | 30      |
| Scientific Reports                                                               | 1.05       | Nature Portfolio                               | Q1       | 29  | 1408 | 48.55  | 17      | 29      |
| SPRS International Journal of Geo-Information                                    | 0.77       | MDPI                                           | Q2       | 23  | 553  | 24.04  | 15      | 27      |
| IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 1.13       | IEEE-Inst Electronic Engineers Inc             | Q1       | 28  | 794  | 28.36  | 16      | 27      |
| Geomorphology                                                                    | 0.98       | Elsevier                                       | Q2       | 27  | 2930 | 108.52 | 24      | 27      |
| Geoscience Frontiers                                                             | 2.41       | Chine University of Geosciences                | Q1       | 25  | 2399 | 95.96  | 22      | 25      |
| Natural Hazards and Earth System Sciences                                        | 0.98       | Copernicus Gesellschaft                        | Q1       | 23  | 930  | 40.43  | 14      | 23      |
| Computers & Geosciences                                                          | 0.83       | Elsevier                                       | Q1       | 22  | 3207 | 145.77 | 21      | 22      |
| Stochastic Environmental Research and Risk Assessment                            | 1.07       | Springer                                       | Q1       | 22  | 893  | 40.59  | 15      | 22      |
| EEE Access                                                                       | 0.87       | IEEE-Inst Electrical Electronics Engineers Inc | Q2       | 19  | 456  | 24.00  | 10      | 19      |
| Environmental Science and Pollution Research                                     | 0 49       | Springer                                       | NA       | 18  | 218  | 12.11  | 8       | 14      |

**TABLE 7.** Top 60 Most occurring Author keywords

| Keyword                             | Осс | Cluster | Links | TLS | Keyword                                                    | Осс | Cluster | Links | TLS |
|-------------------------------------|-----|---------|-------|-----|------------------------------------------------------------|-----|---------|-------|-----|
| Landslide Susceptibility            | 243 | 1       | 37    | 270 | Deep Learning                                              | 166 | 4       | 40    | 208 |
| Landslide                           | 210 | 1       | 47    | 290 | Remote Sensing                                             | 113 | 4       | 43    | 234 |
| GIS                                 | 210 | 1       | 41    | 331 | Landslide Detection                                        | 54  | 4       | 19    | 78  |
| Susceptibility                      | 59  | 1       | 24    | 97  | Convolutional Neural Network                               | 29  | 4       | 15    | 51  |
| Displacement Prediction             | 26  | 1       | 7     | 15  | Landslide Inventory                                        | 18  | 4       | 18    | 35  |
| Machine Learning<br>Algorithms      | 24  | 1       | 16    | 25  | Transfer Learning                                          | 13  | 4       | 13    | 20  |
| Landslide Susceptibility Map        | 21  | 1       | 14    | 25  | Geohazards                                                 | 11  | 4       | 10    | 15  |
| Xgboost                             | 15  | 1       | 10    | 20  | U-Net                                                      | 10  | 4       | 7     | 21  |
| Ensemble Model                      | 13  | 1       | 12    | 15  | Landslide Mapping                                          | 10  | 4       | 7     | 12  |
| Genetic Algorithm                   | 12  | 1       | 9     | 15  | Machine Learning                                           | 423 | 5       | 54    | 517 |
| Landslide Hazard                    | 12  | 1       | 8     | 8   | Random Forest                                              | .41 | 5       | 39    | 229 |
| Support Vector Machine              | 71  | 2       | 29    | 127 | Debris Flow                                                | 35  | 5       | 15    | 43  |
| Geographic Information<br>System    | 31  | 2       | 22    | 47  | Rainfall                                                   | 16  | 5       | 13    | 23  |
| Lidar                               | 22  | 2       | 14    | 42  | Climate Change                                             | 15  | 5       | 12    | 22  |
| Landslide Susceptibility Prediction | 20  | 2       | 12    | 27  | Climate Change Feature Selection Susceptibility Assessment | 14  | 5       | 12    | 22  |
| Machine Learning<br>Models          | 20  | 2       | 12    | 19  | Susceptibility Assessment                                  | 12  | 5       | 11    | 15  |
| Spatial Modeling                    | 17  | 2       | 16    | 30  | Hazard Assessment                                          | 10  | 5       | 8     | 16  |
| Shallow Landslide                   | 15  | 2       | 9     | 21  | Landslide Susceptibility Mapping                           | 91  | 6       | 26    | 114 |
| Multilayer Perceptron               | 14  | 2       | 16    | 26  | Landslide Displacement Prediction                          | 24  | 6       | 4     | 8   |
| Landslide Prediction                | 12  | 2       | 9     | 14  | Feature Extraction                                         | 22  | 6       | 14    | 44  |
| Soil Erosion                        | 10  | 2       | 9     | 10  | Terrain Factors                                            | 20  | 6       | 13    | 47  |
| Artificial Neural Network           | 49  | 3       | 26    | 78  | Neural Network                                             | 15  | 6       | 11    | 17  |
| Artificial Intelligence             | 40  | 3       | 26    | 57  | Ensemble Learning                                          | 12  | 6       | 11    | 19  |
| Susceptibility Mapping              | 36  | 3       | 21    | 61  | Rotation Forest                                            | 11  | 6       | 10    | 25  |
| Slope Stability                     | 32  | 3       | 12    | 27  | Logicus Regression                                         | 82  | 7       | 31    | 145 |
| Landslide Susceptibility Assessment | 20  | 3       | 17    | 37  | Flood Susceptibility                                       | 16  | 7       | 11    | 23  |
| Data Mining                         | 18  | 3       | 16    | 37  | Fuzzy Logic                                                | 13  | 7       | 13    | 17  |
| Earthquake                          | 17  | 3       | 14    | 30  | Weight Of Evidence                                         | 11  | 7       | 8     | 18  |
| Gully Erosion                       | 13  | 3       | 6     | 17  | Risk Assessment                                            | 13  | 8       | 7     | 11  |
| Natural Disasters                   | 11  | 3       | 11    | 21  | Occ.= Occurrences; TLS= Total Link Strengths               |     |         |       |     |
| Soft Computing                      | 10  | 3       | 11    | 12  |                                                            |     |         |       |     |