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Abstract

Article Information

VisualEasier is a user-friendly application designed to improve the visualization and interpretation of
spatially resolved geochemical data. Developed in R environment with the Shiny package, it provides
a dynamic interface that allows users, regardless of programming experience, to generate high-reso-
lution elemental maps, apply image filters, and perform clustering analysis. The application supports
datasets from varied analytical techniques, such as SEM-EDS, Electron Microprobe, Micro-XRF, and
LA-ICP-MS, as long as the input is as comma-separated values with pixel-level positional reference.
Users can produce elemental maps with pixel-by-pixel normalization, generate ternary RGB com-
positions to explore elemental associations, and apply median or gradient filters to enhance visual
features such as grain boundaries or reduce noise. The clustering module uses the k-means algorithm
to organize the sample into user-defined compositional groups, returning a set of outputs that includes
spatial maps, statistical tables, and boxplots for each cluster. All graphical findings can be impor-
ted as high-quality vectorized PDF files. The system’s flexibility allows users to input normalization
references, color palettes, and visualization scales. Application on real samples demonstrated the
effectiveness of the application in uncovering compositional patterns that are not easily identifiable
using conventional static plots. The clustering results provided insights into mineralogical domains
and potential zoning within the sample, while the filter tools improved the clarity of textural and chemi-
cal boundaries. The combination of interactive features, compatibility with multiple data sources, and
customizable outputs makes VisualEasier a versatile tool for geologists, mineralogists, and materials
scientists looking to improve data interpretation. The application is particularly valuable in exploratory
and research environments where rapid feedback and visual diagnostics play a critical role in decision-
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-making and hypothesis generation.

1. Introduction

The visual representation of elemental distribution
is fundamental for a comprehensive understanding in
geochemical studies, as accurate spatialization of elemental
data allows for awide range of interpretations and associations.
However, outputs from analytical procedures often suffer from
low resolution and limit further manipulation such as filtering
and personalization to specific research needs. This becomes
particularly critical in petrological, mineral exploration and
geometallurgical studies, where detailed spatial patterns can
indicate zoning, alteration halos, or textural features related to
mineralization processes (Bérubé et al. 2018; Caté et al. 2017;
Ferreira da Silva et al. 2022a, 2022b; Gazley et al. 2015).

To address these constraints, an attempt was made to
improve the user’s capacity to understand and manipulate
the data, as well as to provide a more suitable approach to
visualization. VisualEasier was developed in the R coding

environment, utilizing the Shiny library package (Chang
et al. 2025). It offers an intuitive graphical interface, designed
especially for users with little or no familiarity with R syntax
or programming logic. This enables accessible and efficient
data visualization, as well as advanced manipulation through
filtering and clustering capabilities.

The application allows users to build single-element
maps with pixel-per-pixel normalization and apply filters to
both single-element and ternary outputs. The ternary map
is displayed as an RGB composition which allows for the
selection of three distinct elements. This becomes particularly
critical in mineralogical and geometallurgical studies, where
detailed spatial patterns can reveal zoning, alteration halos, or
textural features related to mineralization processes.

Additionally, a clustering algorithm is used to segment the
input sample based on elemental composition, generating
auser-defined number of clusters. The outputincludes boxplots
and summary tables describing the elemental characteristics
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of each cluster, as well as individual maps highlighting each
cluster separately to facilitate interpretation of their spatial
distribution. Such clustering outputs are especially valuable in
exploratory data analysis, since they permit the identification
of chemically distinct domains that may correlate to mineral
phases, alteration zones, or depositional patterns.

VisualEasier is compatible with any type of spatially
resolved mineral chemistry dataset, including SEM-EDS
(Scanning Electron Microscopy with Energy Dispersive X-ray
Spectroscopy), Electron Microprobe, Micro-XRF (Micro X-ray
Fluorescence), and LA-ICP-MS (Laser Ablation Inductively
Coupled Plasma Mass Spectrometry), once the data is exported
in comma-separated values (CSV) format and contains pixel-
based positional references. Additional features, such as the
conversion of count-per-second (cps) values to concentrations,
can be performed when an external reference is provided,
preferably the total concentration of the element in the analyzed
sample. This flexibility broadens the applicability of the tool
across various analytical platforms and sample types.

All outputs are available for download in vectorized PDF
format. This ensures high-quality graphic representation
suitable for inclusion in technical reports, publications, and
presentations, expanding the applicability of the tool beyond
exploratory analysis. Also, a chemical estimate for each cluster
is given, and the mineral composition can be interpreted based
on online tools for mineral chemistry processing (e.g. Ferreira
da Silva et al. 2021).

2. Implementation
2.1 The R Environment

As part of its development, the application was built
using the R programming language. To ensure a robust and
comprehensive structure, several additional libraries were
incorporated to address specific functional requirements.
The core of the application relies on the Shiny package, which
handles most of the syntax and enables the creation of an
interactive web-based interface. Complementary packages
such as shinythemes, tidyverse, readr, reshape2, raster, data.
table, patchwork, Cairo, imager, pals, rsconnect, rasterVis,
and ggpubr were also integrated (Barret et al. 2025; Chang
et al. 2025; Hijmans 2025; Wickham 2014, 2016).

These libraries are essential for matrix and dataframe
transformations, raster data manipulation, and graphical output
generation functions that would not be efficiently achievable
using base R alone. Their combined functionality ensured the
application could handle multiple data formats, normalize pixel
values, apply image filters, and generate publication-ready
maps and plots.

2.1.1 The Shiny Application

The development of an application, as previously described,
requires the integration of multiple packages and functions.
Among them, the Shiny package stands out as the most
essential in this scenario due to its unique framework for
building interactive web applications in R (Chang et al. 2025).
Shiny enables the creation of a dynamic user interface,
incorporating widgets, input fields, and action buttons that
seamlessly connect the underlying code with the visual
presentation delivered to the user (e.g. Figueira et al. 2024;

Konrath et al. 2018; Mdller et al. 2020). The rendering of various
outputs is also handled efficiently through Shiny, integrating
the user’s uploaded data with processing steps that result in
enhanced visualizations of the dataset, such as elemental maps,
compositional tables, and clustering analyses. Manipulation of
datasets and user inputs with Shiny syntax enables a more
streamlined workflow, reducing code redundancy and improving
structural parallelism. The use of reactive expressions facilitates
the development of modular functions and dynamic variable
transformations. This allows user inputs to be processed
through multiple layers of computation before returning a final
output. This programming approach is consistently applied
throughout the implementation.

The application’s structure is organized into three main
processing tab panels (Figure 1): Elemental Map, Filtered
Map, and Cluster Map, as well as a Help tab that provides
essential guidance for navigation. In each processing
tab, users are presented with several input widgets which
allow them to specify critical parameters required for map
generation, as found in most analytical reports. These include
selecting which elements to visualize, inputting their weighted
percentages, defining the spatial resolution of the analysis
(in millimeters), and uploading tabular datasets containing the
elemental data.

2.1.2 Elemental Map Function

Initially, the Elemental Map tab, generates individual
geochemical maps for each specified element. The input
data required consists of tabular format files corresponding to
each element, along with additional metadata specifying the
dimensions of the sampled area, essential for accurate spatial
scaling. Furthermore, users can input weighted percentages
for each element to perform normalization, which contributes
to refining the final visual outputs. Users can also choose
from a variety of color palettes to customize the visual output.
The main result produced in this tab is a compilation of
elemental maps based on the parameters selected. Each map
can be individually saved as an image within the application
or collectively exported as a single, vectorized PDF file
containing all generated maps in composition (please refer to
the result section to see the outputs).

2.1.3 “RGB and Filtered Maps” Function

The RGB and Filtered Maps tab provides image
processing tools for both single-element and ternary (RGB
composite) maps. For the RGB composite output, the
application requires the selection of three different elements,
each assigned to a color channel (red, green, or blue) to
best suit the desired visualization. Users can apply a median
filter to reduce noise or a gradient filter to enhance grain
boundaries; both functionalities are implemented using the
Imager package. The median filter smooths the image using
a 3x3 neighborhood window, computing the median pixel
value within this interval. The gradient filter, on the other hand,
highlights edges along the x and y axes, making it particularly
effective for grain boundaries delimitation. In this tab, the
dataset is first normalized and converted into an image object,
which undergoes filtering and further processing. The final
output map is generated by converting the result image back
into a data frame.
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Figure 1. Application tab panels, from left to right, Elemental Map, Filtered Map, Cluster Map.

2.1.4 Cluster Map Function

The Cluster Map tab provides advanced statistical
analysis using the k-means clustering algorithm. By default,
R implements the method proposed by Hartigan and Wong
(1979), which seeks to partition a setofdata pointsinto K clusters
by minimizing the within-cluster sum of squares (WCSS).
The algorithm begins with an initial set of K cluster centers
in N-dimensional space and iteratively refines the partitioning
by evaluating Euclidean distances between each point and
the cluster centroids, transferring points between clusters
whenever such a move reduces the WCSS. In the context of
geochemical mapping, this optimization procedure supports
the delineation of zones with similar elemental compositions.
This is particularly effective to highlight mineralogical domains
that may not be evident through univariate analysis alone.

The output permits users to interpret spatial patterns
in compositional variability by generating not only
a composite cluster map but also individual maps for each
cluster. Additionally, it provides a statistical overview of
cluster compositions through boxplots and summary tables,
displaying concentration ranges, means, and standard
deviations for each cluster group. These tools improve the
interpretability of the clustering results and offer a quantitative
basis for exploring mineralogical segregation and related
geochemical processes.

2.1.5 Data wrangling

The classical data wrangling practices, well established
within the R programming community, particularly through
the Tidyverse package (Wickham 2014), represent
a fundamental role in this project. As core exploratory data
analysis techniques such as data transformation, filtering, and
plotting are essential to the implementation of a visualization-
oriented application.

Primarily for visualization purposes, the input data
undergoes several transformations to ensure compatibility

with the required parameters. These steps involves treating
the user input as a matrix, merging datasets from multiple
elements, and applying operations such as filtering, column
selection, and data binding. This process merges the individual
tabular inputs into a more robust and refined dataset, which
enables pixel-by-pixel normalization and advanced plotting
using the ggplot2 package (Wickham 2016).

In addition to the data preparation for visualization, the
application also performs several statistical summaries,
including compositional means, standard deviations, and
normalization procedures. These are particularly significant
since the input data is generally expressed in cps and must be
converted to indicate the percentage part of each element in
the entire composition of the sample. An essential process for
generating both individual and integrated geochemical maps.

3. Input data

To ensure the proper functioning and reliability of
the application, the input data must adhere to structural
requirements. Each element to be mapped is represented
by a single tabular file in CSV format, containing the results
obtained from the analytical procedure. These files must
include the cps values corresponding to the respective
element, as this metric serves as the basis for generating the
spatial distributions in the application.

For this study, the input data were generated using
a MicroXRF analytical system. The equipment produces
individual files for each analyzed element, where each file
contains a 2D matrix-like representation of the scanned area.
Each row corresponds to a pixel in the image, and each column
reports the cps value measured at that point. The positional
reference of each pixel is implicit in the row/column structure
of the file, preserving the spatial integrity of the measurement.

The MicroXRF output also includes a separate summary
file providing the bulk chemical composition of the scanned
area, which can be used as a normalization reference.
Consequently, the application is able to convert cps values
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into relative concentrations (e.g., in percentage or parts
per million), when such an external reference is available
and provided by the user. Such conversion improves the
comparability among different elements, supports pixel-
by-pixel normalization, and facilitates more quantitative
interpretations of the geochemical data.

This data structure, composed of one matrix per element,
each in CSV format, plus a reference table, is fully compatible
with VisualEasier. It enables efficient and automated generation
of elemental maps, RGB composites, and clustering analysis,
without the need for manual preprocessing or code manipulation.

Additionally, any mineral chemistry analytical system
that meets the aforementioned requirements, such as
exporting individual elemental files, providing reference
values for converting cps to concentrations, and maintaining
spatial positioning of measurements, is compatible with the
application and can take full advantage of its functionalities.
Such as SEM/EDS mapping, Electron Microprobe analyses,
and LA-ICP-MS datasets.

4. Application results and discussions

To demonstrate the capabilities of the application, we
obtained MicroXRF data from sulfide-bearing metamorphosed
volcano-sedimentary rocks. These rocks are composed of
silicates (e.g., garnet, chlorite, plagioclase, quartz, epidote,
tremolite, anthophyllite, among others), sulfides (e.g.,
galena, chalcopyrite, sphalerite, pyrite, pyrrhotite), and minor
carbonates (identified as zones with high Ca content, once
C and O are not identified). Therefore, the analyses contain
elemental signals for Fe, Zn, S, Ca, Si, Al, Cu, Ti, Pb, Mg,
and several other elements shown in the next sections.
These data served as input for testing the different
functionalities of the application, with each sample being
processed within a dedicated tab panel.

4.1 The Elemental Map tab

Alongside enabling the capability to produce individual
elemental distribution maps with higher resolution and
optimized data scaling, the application provides additional
features that strengthen accessibility and facilitate user
interaction. One notable implementation is the inclusion of
a wide variety of color palettes, including perceptually uniform
and colorblind-friendly schemes. These options ensure that
the visual interpretation of the data remains effective and
inclusive for a broader audience, without compromising the
accuracy or clarity of the elemental maps. In the current
version, users can choose from five different color pallets
(Figure 2): “viridis”, “inferno”, “plasma”, “magma”, or “turbo”.

The normalization allows for a more correlative relationship
between different elements. Alongside, understanding of
elemental spatialization and distribution regarding the visualisation
of the whole sample in a compilated product gives the possibility
to interpret associations with high accuracy and a more robust
general knowledge of the process that thrives through the data.

4.2 The Filtered Map tab

Filtering plays a crucial role in the preparation of
datasets for a suitable and effective visualization,
especially to highlight different aspects of the same sample.

In the case of sample 3 (Figure 3), the median filter was
applied to reduce noise and enhance overall readability, while
the gradient filter was used to emphasize grain boundaries
and structural features. Both filtering strategies contribute to
amore accurate and insightful interpretation of spatial patterns.
The ternary RGB map interface allows users to assign specific
elements to each of the red, green, and blue channels, offering
flexibility in customization of visual outputs and elemental
relationships interpretation from multiple perspectives.
On the other hand, the individual elemental map is important
for the characterization of a single element and to highlight
its distribution with more focus on the single representation in
regards to the association between other elements.

4.3 The Cluster Map tab

Finally, the clusterization process is fundamental for a more
robust and deeper analysis of the sample to be interpreted
(Figure 4). The segmentation of different groups (clusters)
within the sample based on the elemental composition
resembles the differentiation between various mineral systems.
However, it is highly recommended to navigate through the
other tabs of the application as an initial approach to better
familiarize the study object, once it is up to the user to select
how many clusters the algorithm will use (k). A fewer number
of clusters could represent less descriptive groups, while
a higher number directs the algorithm to differentiate similar
compositional areas, or also grouping noise as an individual
cluster. Such a limitation can occur in the application, but
the flexible processing allows users to attempt clusterization
through different cluster numbers until the output is suitable
for the intended analysis.

Alongside the main output (Figure 4a), boxplots presenting
the compositional information of each cluster (Figure 4b) ,
together with the summary panel (Tables 1 and 2), provide
essential quantitative supportfordata interpretation. In addition,
the individual cluster map (Figure 4d) highlights the spatial
distribution of each cluster. The general compositional patterns
revealed by these outputs enable further interpretations, not
only regarding the elemental distribution within each cluster but
also in terms of potential mineralogical inferences.

Although those interpretations are susceptible to the
resolution and quality of the input data, the application is
sensitive and responsive to the dataset processed. Indicating
that high-resolution data can amplify the spectrum of possible
interpretations, with more cohesive and direct spatialization of
the elemental distribution, and consequently, the clusterization.

5. Final remarks

The VisualEasier offers a wide range of possibilities for the
visual interpretation of geochemical data, providing a robust
tool for identifying meaningful connections between elemental
distribution and mineralogical processes. The application is
divided into multiple tabs, each with a specific purpose, which
enables a complete and structured analysis of the sample.
Although the combined use of all tabs provides a more
thorough visualization, the system remains flexible. Each tab
functions independently, allowing users to upload data directly
and focus on certain aspects of interest. This framework
ensures that users can work with the most relevant tools for
their analysis, without relying on a fixed workflow.
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Table 1. Cluster Map tab compositional mean per cluster table output.
Cluster Roiir;:::%z;t)ifon Si (Wt%) | Zn (Wt%) | Fe (Wt%) | S (Wt%) | Ca (wt%) | Al (Wt%) | Pb (wt%) | Cu (wt%) | Mg (wt%) | K (wt%) | Ti (wt%) | Mn (wt%)
1 18.8 7.093 15.203 32.315 | 21.073 2.856 2.618 5.679 10.263 1.414 0.692 0.399 0.394
2 14.8 44.523 6.016 4.874 2.733 13.139 18.04 3.82 1.321 1.301 3.249 0.742 0.061
3 6.9 75.303 5.185 3173 2.346 2.635 3.449 4.569 1.132 1.058 0.648 0.462 0.04
4 38.6 7.472 41.882 15.236 18.01 2.859 2.577 5.324 4132 1.292 0.685 0.343 0.187
5 6.7 28.652 12.423 8.046 13.706 7.841 8.285 13.973 1.586 2.592 2.02 0.776 0.1
6 14.2 28.659 7.641 18.061 4.329 15.217 7.791 3.663 1.493 6.737 4.273 1.911 0.227
Table 2. Cluster Map tab compositional standard variation per cluster table output.
Cluster | Si(wt%) | Zn (Wwt%) | Fe (wt%) S (wt%) | Ca(wt%) | Al (wt%) | Pb (wt%) | Cu (wt%) Mg (wt%) K (wt%) Ti (wt%) Mn (wt%)
1 7142 9.58 8.071 4.436 2.882 2.448 1.113 6.812 1.92 0.649 0.694 0.099
2 10.805 7.285 3.8 2.351 4.981 5.249 1.764 1.335 1.642 1124 1.206 0.047
3 11.609 6.495 3.056 2.096 2.824 2.645 1.887 1.186 1.445 0.631 0.972 0.038
4 7.595 9.684 5.26 4.169 2.921 2.497 1.483 2.633 1.836 0.642 0.688 0.064
5 14.497 9.362 4.989 6.723 5 5.324 4102 1.362 2.835 1.14 1.155 0.062
6 8.538 7.545 5.822 3.329 8.026 4.79 1.904 1.598 3.856 1.468 3.606 0.071

Moreover, the application not only enhances visualization
but also facilitates its transferability, as users can export the
results in vectorized PDF format. This feature supports both
detailed image analysis and straightforward export in other
image formats directly through the interface.

The performance of the application is inherently
dependent on the quality of the input datasets, users who
provide well-processed and reliable data can maximize its
analytical potential. In addition, the concise and modular
design facilitates future extensions, with community feedback
promoting continuous refinement. This includes not only
computational enhancements, but also adaptation to a broader
variety of analytical datasets and sample types.

Availability

The source code for VisualEasier is freely available for
download and use under an open license via GitHub at:
<https://github.com/lucasamesquita/Visualeasier>. Users are
encouraged to explore, adapt, and contribute to the ongoing
development of the tool. Additionally, an online version of the
application will soon be available on the Geological Survey
of Brazil’s official application platform: <https://apps.sgb.gov.
br/visual-easier/>, allowing users to run the tool directly from
a web browser without requiring local installation.
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