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VisualEasier is a user-friendly application designed to improve the visualization and interpretation of 
spatially resolved geochemical data. Developed in  R environment  with the Shiny package, it provides 
a dynamic interface that allows users, regardless of programming experience, to generate high-reso-
lution elemental maps, apply image filters, and perform clustering analysis. The application supports 
datasets from  varied analytical techniques, such as SEM-EDS, Electron Microprobe, Micro-XRF, and 
LA-ICP-MS, as long as the input is as comma-separated values with pixel-level positional reference. 
Users can produce  elemental maps with pixel-by-pixel normalization, generate ternary RGB com-
positions to explore elemental associations, and apply median or gradient filters to enhance visual 
features such as grain boundaries or reduce noise. The clustering module  uses the k-means algorithm 
to organize the sample into user-defined compositional groups, returning a set of outputs that includes 
spatial maps, statistical tables, and boxplots for each cluster. All graphical findings can be impor-
ted as high-quality vectorized PDF files. The system’s flexibility allows users to input normalization 
references, color palettes, and visualization scales. Application on real samples demonstrated the 
effectiveness of the application in  uncovering compositional patterns that are not easily identifiable 
using conventional static plots. The clustering results provided insights into mineralogical domains 
and potential zoning within the sample, while the filter tools improved the clarity of textural and chemi-
cal boundaries. The combination of interactive features, compatibility with multiple data sources, and 
customizable outputs makes VisualEasier a versatile tool for geologists, mineralogists, and materials 
scientists looking to  improve data interpretation. The application is particularly valuable in exploratory 
and research environments where rapid feedback and visual diagnostics play a critical role in decision-
-making and hypothesis generation.

VisualEasier - An enhanced visualization tool for mineral chemistry data analysis

Keywords:
Elemental map 
MicroXRF 
Mineral Chemistry 
Shiny application
Clustering analysis

1. Introduction

The visual representation of elemental distribution 
is fundamental for a comprehensive understanding in 
geochemical studies, as accurate spatialization of elemental 
data allows for a wide range of interpretations and associations. 
However, outputs from analytical procedures often suffer from 
low resolution and limit further manipulation such as filtering 
and personalization to specific research needs. This becomes 
particularly critical in petrological, mineral exploration and 
geometallurgical studies, where detailed spatial patterns can 
indicate zoning, alteration halos, or textural features related to 
mineralization processes (Bérubé et al. 2018; Caté et al. 2017; 
Ferreira da Silva et al. 2022a, 2022b; Gazley et al. 2015).

To address these constraints, an attempt was made to  
improve the user’s capacity to understand and manipulate 
the data, as well as to provide a more suitable approach to 
visualization. VisualEasier was developed in the R coding 

environment, utilizing the Shiny library package (Chang 
et al. 2025). It offers an intuitive graphical interface, designed 
especially for users with little or no familiarity with R syntax 
or programming logic. This enables  accessible and efficient 
data visualization, as well as advanced manipulation through 
filtering and clustering capabilities.

The application allows users to build single-element 
maps with pixel-per-pixel normalization and apply filters to 
both single-element and ternary outputs. The ternary map 
is  displayed as an RGB composition which allows for the 
selection of three distinct elements. This becomes particularly 
critical in mineralogical and geometallurgical studies, where 
detailed spatial patterns can reveal zoning, alteration halos, or 
textural features related to mineralization processes.

Additionally, a clustering algorithm is used to segment the 
input sample based on elemental composition, generating 
a user-defined number of clusters. The output includes boxplots 
and summary tables describing the elemental characteristics 
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of each cluster, as well as individual maps highlighting each 
cluster separately to facilitate interpretation of their spatial 
distribution. Such clustering outputs are especially valuable in 
exploratory data analysis,  since they permit the identification 
of chemically distinct domains that may correlate to mineral 
phases, alteration zones, or depositional patterns.

VisualEasier is compatible with any type of spatially 
resolved mineral chemistry dataset, including SEM-EDS 
(Scanning Electron Microscopy with Energy Dispersive X-ray 
Spectroscopy), Electron Microprobe, Micro-XRF (Micro X-ray 
Fluorescence), and LA-ICP-MS (Laser Ablation Inductively 
Coupled Plasma Mass Spectrometry), once the data is exported 
in comma-separated values (CSV) format and contains pixel-
based positional references. Additional features, such as the 
conversion of count-per-second (cps) values to concentrations, 
can be performed when an external reference is provided, 
preferably the total concentration of the element in the analyzed 
sample. This flexibility broadens the applicability of the tool 
across various analytical platforms and sample types.

All outputs are available for download in vectorized PDF 
format. This ensures high-quality graphic representation 
suitable for inclusion in technical reports, publications, and 
presentations, expanding the applicability of the tool beyond 
exploratory analysis. Also, a chemical estimate for each cluster 
is given, and the mineral composition can be interpreted based 
on online tools for mineral chemistry processing (e.g. Ferreira 
da Silva et al. 2021).

2. Implementation

2.1 The R Environment

As part of its development, the application was built 
using the R programming language. To ensure a robust and 
comprehensive structure, several additional libraries were 
incorporated to address specific functional requirements. 
The core of the application relies on the Shiny package, which 
handles most of the syntax and enables the creation of an 
interactive web-based interface. Complementary packages 
such as shinythemes, tidyverse, readr, reshape2, raster, data.
table, patchwork, Cairo, imager, pals, rsconnect, rasterVis, 
and ggpubr were also integrated (Barret et al. 2025; Chang 
et al. 2025; Hijmans 2025; Wickham 2014, 2016).

These libraries are essential for matrix and dataframe 
transformations, raster data manipulation, and graphical output 
generation functions that would not be efficiently achievable 
using base R alone. Their combined functionality ensured the 
application could handle multiple data formats, normalize pixel 
values, apply image filters, and generate publication-ready 
maps and plots.

2.1.1 The Shiny Application

The development of an application, as previously described, 
requires the integration of multiple packages and functions. 
Among them, the Shiny package stands out as the most 
essential in this scenario due to its unique framework for 
building interactive web applications in R (Chang et al. 2025). 
Shiny enables the creation of a dynamic user interface, 
incorporating widgets, input fields, and action buttons that 
seamlessly connect the underlying code with the visual 
presentation delivered to the user (e.g. Figueira et al. 2024; 

Konrath et al. 2018; Möller et al. 2020). The rendering of various 
outputs is also handled efficiently through Shiny, integrating 
the user’s uploaded data with processing steps that result in 
enhanced visualizations of the dataset, such as elemental maps, 
compositional tables, and clustering analyses. Manipulation of 
datasets and user inputs with Shiny syntax enables a more 
streamlined workflow, reducing code redundancy and improving 
structural parallelism. The use of reactive expressions facilitates 
the development of modular functions and dynamic variable 
transformations. This allows user inputs to be processed 
through multiple layers of computation before returning a final 
output. This programming approach is consistently applied 
throughout the implementation.

The application’s structure is organized into three main 
processing tab panels (Figure 1): Elemental Map, Filtered 
Map, and Cluster Map, as well as a Help tab that provides 
essential guidance for navigation. In each processing 
tab,  users are presented with several input widgets which  
allow them to specify  critical parameters required for map 
generation, as found in most analytical reports. These include 
selecting which elements to visualize, inputting their weighted 
percentages, defining the spatial resolution of the analysis 
(in millimeters), and uploading tabular datasets containing the 
elemental data.

2.1.2 Elemental Map Function

Initially, the Elemental Map tab, generates individual 
geochemical maps for each specified element. The input 
data required consists of tabular format files corresponding to 
each element, along with additional metadata specifying the 
dimensions of the sampled area, essential for accurate spatial 
scaling. Furthermore, users can input weighted percentages 
for each element to perform normalization, which contributes 
to refining the final visual outputs. Users can also choose 
from a variety of color palettes to customize the visual output. 
The main result produced in this tab is a compilation of 
elemental maps based on the parameters selected. Each map 
can be individually saved as an image within the application 
or collectively exported as a single, vectorized PDF file 
containing all generated maps in composition (please refer to 
the result section to see the outputs).

2.1.3 “RGB and Filtered Maps” Function

The RGB and Filtered Maps tab provides image 
processing tools for both single-element and ternary (RGB 
composite) maps. For the RGB composite output, the 
application requires the selection of three different elements, 
each assigned to a color channel (red, green, or blue) to 
best suit the desired visualization. Users can apply a median 
filter to reduce noise or a gradient filter to enhance grain 
boundaries; both functionalities are implemented using the 
Imager package. The median filter smooths the image using 
a 3×3 neighborhood window, computing the median pixel 
value within this interval. The gradient filter, on the other hand, 
highlights edges along the x and y axes, making it particularly 
effective for grain boundaries delimitation. In this tab, the 
dataset is first normalized and converted into an image object, 
which undergoes filtering and further processing. The final 
output map is generated by converting the result image back 
into a data frame.
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2.1.4 Cluster Map Function

The Cluster Map tab provides advanced statistical 
analysis using the k-means clustering algorithm. By default, 
R implements the method proposed by Hartigan and Wong 
(1979), which seeks to partition a set of data points into K clusters 
by minimizing the within-cluster sum of squares (WCSS). 
The algorithm begins with an initial set of K cluster centers 
in N-dimensional space and iteratively refines the partitioning 
by evaluating Euclidean distances between each point and 
the cluster centroids, transferring points between clusters 
whenever such a move reduces the WCSS. In the context of 
geochemical mapping, this optimization procedure supports 
the delineation of zones with similar elemental compositions. 
This is particularly effective to highlight mineralogical domains 
that may not be evident through univariate analysis alone.

The output permits users to interpret spatial patterns 
in compositional variability by generating not only 
a composite cluster map but also individual maps for each 
cluster. Additionally, it provides a statistical overview of 
cluster compositions through boxplots and summary tables, 
displaying concentration ranges, means, and standard 
deviations for each cluster group. These tools improve the 
interpretability of the clustering results and offer a quantitative 
basis for exploring mineralogical segregation and related 
geochemical processes.

2.1.5 Data wrangling

The classical data wrangling practices, well established 
within the R programming community, particularly through 
the Tidyverse package (Wickham 2014), represent 
a fundamental role in this project. As core exploratory data 
analysis techniques such as data transformation, filtering, and 
plotting are essential to the implementation of a visualization- 
oriented application.

Primarily for visualization purposes, the input data  
undergoes several transformations to ensure compatibility 

with the required parameters. These steps involves treating 
the user input as a matrix, merging datasets from multiple 
elements, and applying operations such as filtering, column 
selection, and data binding. This process merges the individual 
tabular inputs into a more robust and refined dataset, which 
enables pixel-by-pixel normalization and advanced plotting 
using the ggplot2 package (Wickham 2016).

In addition to the data preparation for visualization, the 
application also performs several statistical summaries, 
including compositional means, standard deviations, and 
normalization procedures. These are particularly significant 
since the input data is generally expressed in cps and must be 
converted to indicate the percentage part of each element in 
the  entire composition of the sample. An essential process for 
generating both individual and integrated geochemical maps.

3. Input data

To ensure the proper functioning and reliability of 
the application, the input data must adhere to structural  
requirements. Each element to be mapped is represented 
by a single tabular file in CSV format, containing the results 
obtained from the analytical procedure. These files must 
include the cps values corresponding to the respective 
element, as this metric serves as the basis for generating the 
spatial distributions in the application.

For this  study, the input data were generated using 
a  MicroXRF  analytical system. The equipment produces 
individual files for each analyzed element, where each file 
contains a 2D matrix-like representation of the scanned area. 
Each row corresponds to a pixel in the image, and each column 
reports the cps value measured at that point. The positional 
reference of each pixel is implicit in the row/column structure 
of the file, preserving the spatial integrity of the measurement.

The MicroXRF output also includes a separate summary 
file providing the bulk chemical composition of the scanned 
area, which can be used as a normalization reference.  
Consequently, the application is able to convert cps values 

Figure 1. Application tab panels, from left to right, Elemental Map, Filtered Map, Cluster Map.
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into relative concentrations (e.g., in percentage or parts 
per million), when such an external reference is available 
and provided by the user. Such conversion improves the 
comparability among different elements, supports pixel-
by-pixel normalization, and facilitates more quantitative 
interpretations of the geochemical data.

This data structure, composed of one matrix per element, 
each in CSV format, plus a reference table, is fully compatible 
with VisualEasier. It enables efficient and automated generation 
of elemental maps, RGB composites, and clustering analysis, 
without the need for manual preprocessing or code manipulation.

Additionally, any mineral chemistry analytical system 
that meets the aforementioned requirements, such as 
exporting individual elemental files, providing reference 
values for converting cps to concentrations, and maintaining 
spatial positioning of measurements, is compatible with the 
application and can take full advantage of its functionalities.  
Such as SEM/EDS mapping, Electron Microprobe analyses, 
and LA-ICP-MS datasets.

4. Application results and discussions

To demonstrate the capabilities of the application, we 
obtained MicroXRF data from sulfide-bearing metamorphosed 
volcano-sedimentary rocks. These rocks are composed of 
silicates (e.g., garnet, chlorite, plagioclase, quartz, epidote, 
tremolite, anthophyllite, among others), sulfides (e.g., 
galena, chalcopyrite, sphalerite, pyrite, pyrrhotite), and minor 
carbonates (identified as zones with high Ca content, once 
C  and O  are not identified).  Therefore, the analyses contain 
elemental signals for Fe, Zn, S, Ca, Si, Al, Cu, Ti, Pb, Mg, 
and several other elements shown in the next sections. 
These data served as input for testing the different 
functionalities of the application, with each sample being 
processed within a dedicated tab panel. 

4.1 The Elemental Map tab

Alongside enabling the capability to produce individual 
elemental distribution maps with higher resolution and 
optimized data scaling, the application provides additional 
features that strengthen accessibility and facilitate user 
interaction. One notable implementation is the inclusion of 
a wide variety of color palettes, including perceptually uniform 
and colorblind-friendly schemes. These options ensure that 
the visual interpretation of the data remains effective and 
inclusive for a broader audience, without compromising the 
accuracy or clarity of the elemental maps. In the current 
version, users can choose from five different color pallets 
(Figure 2): “viridis”, “inferno”, “plasma”, “magma”, or “turbo”.

The normalization allows for a more correlative relationship 
between different elements. Alongside, understanding of 
elemental spatialization and distribution regarding the visualisation 
of the whole sample in a compilated product gives the possibility 
to interpret associations with high accuracy and a more robust 
general knowledge of the process that thrives through the data.

4.2 The Filtered Map tab

Filtering plays a crucial role in the preparation of 
datasets for a suitable and effective visualization, 
especially to highlight different aspects of the same sample. 

In the case of sample 3 (Figure 3), the median filter was 
applied to reduce noise and enhance overall readability, while 
the gradient filter was used  to emphasize grain boundaries 
and structural features. Both filtering strategies contribute to 
a more accurate and insightful interpretation of spatial patterns. 
The ternary RGB map interface allows users to assign specific 
elements to each of the red, green, and blue channels, offering 
flexibility in customization of visual outputs and elemental 
relationships interpretation from multiple perspectives. 
On the other hand, the individual elemental map is important 
for the characterization of a single element and to highlight 
its distribution with more focus on the single representation in 
regards to the association between other elements.

4.3 The Cluster Map tab

Finally, the clusterization process is fundamental for a more 
robust and deeper analysis of the sample to be interpreted 
(Figure 4). The segmentation of different groups (clusters) 
within the sample based on the elemental composition 
resembles the differentiation between various mineral systems. 
However, it is highly recommended to navigate through the 
other tabs of the application as an initial approach to better 
familiarize  the study object, once it is up to the user to select 
how many clusters the algorithm will use (k). A fewer number 
of clusters could represent less descriptive groups, while 
a higher number directs the algorithm to differentiate similar 
compositional areas, or also grouping noise as an individual 
cluster. Such a limitation can occur in  the application, but 
the flexible processing allows users to attempt clusterization 
through different cluster numbers until the output is suitable 
for the intended analysis.

Alongside the main output (Figure 4a), boxplots presenting 
the compositional information of each cluster (Figure 4b) , 
together with  the summary panel (Tables 1 and 2), provide 
essential  quantitative  support for data  interpretation. In addition, 
the individual cluster map (Figure 4d) highlights the spatial 
distribution of each cluster. The general compositional patterns 
revealed by these outputs enable further interpretations, not 
only regarding the elemental distribution within each cluster but 
also  in terms of potential mineralogical inferences.

Although those interpretations are susceptible to the 
resolution and quality of the input data, the application is 
sensitive and responsive to the dataset processed. Indicating 
that high-resolution data can amplify the spectrum of possible 
interpretations, with more cohesive and direct spatialization of 
the elemental distribution, and consequently, the clusterization.

5. Final remarks

The VisualEasier offers a wide range of possibilities for the 
visual interpretation of geochemical data, providing a robust 
tool for identifying meaningful connections between elemental 
distribution and mineralogical processes. The application is 
divided into multiple tabs, each with a specific purpose, which 
enables a complete and structured analysis of the sample. 
Although the combined use of all tabs provides a more 
thorough visualization, the system remains flexible. Each tab 
functions independently, allowing users to upload data directly 
and focus on certain aspects of interest. This framework 
ensures that users can work with the most relevant tools for 
their analysis, without relying on a fixed workflow.
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Figure 2. Elemental Map outputs, viridis, turbo, inferno, magma and plasma palettes.

Figure 3. Sample 3 Filtered Map outputs, unfiltered, median and gradient filters applied.
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Figure 4.  Cluster Map outputs resulted from sample A analysis. A) Cluster Map, B) Cluster Boxplot, C) Individual Cluster Map.

A

B

C



VisualEasier: Elemental Map Visualization Tool 175

Author A B C D E F

LAM
GFS
JBR

A - Study design/ Conceptualization   B - Investigation/ Data acquisition 
C - Data Interpretation/ Validation	   D - Writing 
E - Review/Editing		    F - Supervision/Project administration

Table 1. Cluster Map tab compositional mean per cluster table output.

Table 2. Cluster Map tab compositional standard variation per cluster table output.

Cluster Percentage of  
Rock Composition Si (wt%) Zn (wt%) Fe (wt%) S (wt%) Ca (wt%) Al (wt%) Pb (wt%) Cu (wt%) Mg (wt%) K (wt%) Ti (wt%) Mn (wt%)

1 18.8 7.093 15.203 32.315 21.073 2.856 2.618 5.679 10.263 1.414 0.692 0.399 0.394

2 14.8 44.523 6.016 4.874 2.733 13.139 18.04 3.82 1.321 1.301 3.249 0.742 0.061

3 6.9 75.303 5.185 3.173 2.346 2.635 3.449 4.569 1.132 1.058 0.648 0.462 0.04

4 38.6 7.472 41.882 15.236 18.01 2.859 2.577 5.324 4.132 1.292 0.685 0.343 0.187

5 6.7 28.652 12.423 8.046 13.706 7.841 8.285 13.973 1.586 2.592 2.02 0.776 0.1

6 14.2 28.659 7.641 18.061 4.329 15.217 7.791 3.663 1.493 6.737 4.273 1.911 0.227

Cluster Si (wt%) Zn (wt%) Fe (wt%) S (wt%) Ca (wt%) Al (wt%) Pb (wt%) Cu (wt%) Mg (wt%) K (wt%) Ti (wt%) Mn (wt%)

1 7.142 9.58 8.071 4.436 2.882 2.448 1.113 6.812 1.92 0.649 0.694 0.099

2 10.805 7.285 3.8 2.351 4.981 5.249 1.764 1.335 1.642 1.124 1.206 0.047

3 11.609 6.495 3.056 2.096 2.824 2.645 1.887 1.186 1.445 0.631 0.972 0.038

4 7.595 9.684 5.26 4.169 2.921 2.497 1.483 2.633 1.836 0.642 0.688 0.064

5 14.497 9.362 4.989 6.723 5 5.324 4.102 1.362 2.835 1.14 1.155 0.062

6 8.538 7.545 5.822 3.329 8.026 4.79 1.904 1.598 3.856 1.468 3.606 0.071

Moreover, the application not only enhances visualization 
but also facilitates its transferability, as users can export the 
results in vectorized PDF format. This feature supports both 
detailed image analysis and straightforward export in other 
image formats directly through the interface.

The performance of the application is inherently 
dependent on the quality of the input datasets, users who 
provide well-processed and reliable data can maximize its 
analytical potential. In addition, the concise and modular 
design facilitates future extensions, with community feedback 
promoting continuous refinement. This includes not only 
computational enhancements, but also adaptation to a broader 
variety of analytical datasets and sample types.

Availability

The source code for VisualEasier is freely available for 
download and use under an open license via GitHub at: 
<https://github.com/lucasamesquita/Visualeasier>. Users are 
encouraged to explore, adapt, and contribute to the ongoing 
development of the tool. Additionally, an online version of the 
application will soon be available on the Geological Survey 
of Brazil’s official application platform: <https://apps.sgb.gov.
br/visual-easier/>, allowing users to run the tool directly from 
a web browser without requiring local installation.
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