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VisualEasier is a user-friendly application designed to improve the visualization and interpretation 
of spatially resolved geochemical data. Developed in  R environment  with the Shiny package, it provides 
a dynamic interface that allows users, regardless of programming experience, to generate high-resolution 
elemental maps, apply image filters, and perform clustering analysis. The application supports datasets 
from  varied analytical techniques, such as SEM-EDS, Electron Microprobe, Micro-XRF, and LA-ICP-MS, 
as long as the input is as comma-separated values with pixel-level positional reference. Users can produce  
elemental maps with pixel-by-pixel normalization, generate ternary RGB compositions to explore elemental 
associations, and apply median or gradient filters to enhance visual features such as grain boundaries 
or reduce noise. The clustering module  uses the k-means algorithm  to organize the sample into user-
defined compositional groups, returning a set of outputs that includes spatial maps, statistical tables, and 
boxplots for each cluster. All graphical findings can be  imported as high-quality vectorized PDF files. 
The system’s flexibility allows users to input normalization references,  color palettes, and  visualization 
scales. Application on real samples demonstrated the effectiveness of the application in  uncovering 
compositional patterns that are not easily identifiable using conventional static plots. The clustering 
results provided insights into mineralogical domains and potential zoning within the sample, while the filter 
tools improved the clarity of textural and chemical boundaries. The combination of interactive features, 
compatibility with multiple data sources, and customizable outputs makes VisualEasier a versatile tool for 
geologists, mineralogists, and materials scientists looking to  improve data interpretation. The application 
is particularly valuable in exploratory and research environments where rapid feedback and visual 
diagnostics play a critical role in decision-making and hypothesis generation.

VisualEasier - An enhanced visualization tool for mineral chemistry data analysis
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1. Introduction

The visual representation of elemental distribution 
is fundamental for a comprehensive understanding in 
geochemical studies, as accurate spatialization of elemental 
data allows for a wide range of interpretations and associations. 
However, outputs from analytical procedures often suffer from 
low resolution and limit further manipulation such as filtering 
and personalization to specific research needs. This becomes 
particularly critical in petrological, mineral exploration and 
geometallurgical studies, where detailed spatial patterns can 
indicate zoning, alteration halos, or textural features related to 
mineralization processes (Bérubé et al., 2018; Caté et al., 2017; 
Ferreira da Silva et al., 2022a, 2022b; Gazley et al., 2015).

To address these  constraints, an attempt was made to  
improve the user’s  capacity to understand and manipulate 
the data,  as well as to provide a more suitable approach to  
visualization. VisualEasier was developed in the R coding 
environment, utilizing the Shiny library package (Chang 
et al., 2025). It offers an intuitive graphical interface, designed 
especially for users with little or no familiarity with R syntax 
or programming logic.  This enables  accessible and efficient 
data visualization, as well as advanced manipulation through 
filtering and clustering capabilities.

The application allows users to build single-element 
maps with pixel-per-pixel normalization and apply filters to 
both single-element and ternary outputs. The ternary map 
is  displayed as an RGB composition which allows for the 
selection of three distinct elements. This becomes particularly 
critical in mineralogical and geometallurgical studies, where 
detailed spatial patterns can reveal zoning, alteration halos, or 
textural features related to mineralization processes.

Additionally, a clustering algorithm is used to segment the 
input sample based on elemental composition, generating 
a user-defined number of clusters. The output includes boxplots 
and summary tables describing the elemental characteristics 
of each cluster, as well as individual maps highlighting each 
cluster separately to facilitate interpretation of their spatial 
distribution. Such clustering outputs are especially valuable in 
exploratory data analysis, since they permit the identification 
of chemically distinct domains that may correlate to mineral 
phases, alteration zones, or depositional patterns.

VisualEasier is compatible with any type of spatially 
resolved mineral chemistry dataset, including SEM-EDS 
(Scanning Electron Microscopy with Energy Dispersive X-ray 
Spectroscopy), Electron Microprobe, Micro-XRF (Micro X-ray 
Fluorescence), and LA-ICP-MS (Laser Ablation Inductively 
Coupled Plasma Mass Spectrometry), once the data is exported 
in comma-separated values (CSV) format and contains pixel-
based positional references. Additional features, such as the 
conversion of count-per-second (cps) values to concentrations, 
can be performed when an external reference is provided, 
preferably the total concentration of the element in the analyzed 
sample. This flexibility broadens the applicability of the tool 
across various analytical platforms and sample types.

All outputs are available for download in vectorized PDF 
format. This ensures high-quality graphic representation suitable 
for inclusion in technical reports, publications, and presentations, 
expanding the applicability of the tool beyond exploratory analysis. 
Also, a chemical estimate for each cluster is given, and the mineral 
composition can be interpreted based on online tools for mineral 
chemistry processing (e.g. Ferreira da Silva et al., 2021).

2. Implementation

2.1 The R Environment

As part of its development, the application was built 
using the R programming language. To ensure a robust and 
comprehensive structure, several additional libraries were 
incorporated to address specific functional requirements. 
The core of the application relies on the Shiny package, which 
handles most of the syntax and enables the creation of an 
interactive web-based interface. Complementary packages 
such as shinythemes, tidyverse, readr, reshape2, raster, data.
table, patchwork, Cairo, imager, pals, rsconnect, rasterVis, 
and ggpubr were also integrated (Barret et al., 2025; Chang  
et al., 2025; Hijmans, 2025; Wickham, 2016, 2014). 

These libraries are essential for matrix and dataframe 
transformations, raster data manipulation, and graphical 
output generation functions that would not be efficiently 
achievable using base R alone. Their combined functionality 
ensured the application could handle multiple data formats, 
normalize pixel values, apply image filters, and generate 
publication-ready maps and plots.

2.1.1 The Shiny Application

The development of an application, as previously 
described, requires the integration of multiple packages and 
functions. Among them, the Shiny package stands out as the 
most essential in this scenario due to its unique framework 
for building interactive web applications in R (Chang 
et al., 2025). Shiny enables the creation of a dynamic user 
interface, incorporating widgets, input fields, and action 
buttons that seamlessly connect the underlying code with the 
visual presentation delivered to the user (e.g. Figueira et al., 
2024; Konrath et al., 2018; Möller et al., 2020). The rendering 
of various outputs is also handled efficiently through Shiny, 
integrating the user’s uploaded data with processing steps 
that result in enhanced visualizations of the dataset, such 
as elemental maps, compositional tables, and clustering 
analyses. Manipulation of datasets and user inputs with 
Shiny syntax enables a more streamlined workflow, reducing 
code redundancy and improving structural parallelism. 
The use of reactive expressions facilitates the development 
of modular functions and dynamic variable transformations. 
This allows user inputs to be processed through 
multiple layers of computation before returning a final 
output. This programming approach is consistently applied 
throughout the implementation.

The application’s structure is organized into three main 
processing tab panels (Figure 1): Elemental Map, Filtered 
Map, and Cluster Map, as well as a Help tab that provides 
essential guidance for navigation. In each processing 
tab, users are presented with several input widgets which  
allow them to specify  critical parameters required for map 
generation, as found in most analytical reports. These include 
selecting which elements to visualize, inputting their weighted 
percentages, defining the spatial resolution of the analysis 
(in millimeters), and uploading tabular datasets containing 
the elemental data.
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2.1.2 Elemental Map Function

Initially,  the Elemental Map tab, generates individual 
geochemical maps for each specified element. The input 
data required consists of tabular format files corresponding to 
each element, along with additional metadata specifying the 
dimensions of the sampled area, essential for accurate spatial 
scaling. Furthermore, users can input weighted percentages 
for each element to perform normalization, which contributes 
to refining the final visual outputs. Users can also choose 
from a variety of color palettes to customize the visual output. 
The main result produced in this tab is a compilation of 
elemental maps based on the parameters selected. Each map 
can be individually saved as an image within the application 
or collectively exported as a single, vectorized PDF file 
containing all generated maps in composition (please refer to 
the result section to see the outputs). 

2.1.3 “RGB and Filtered Maps” Function

The RGB and Filtered Maps tab provides image 
processing tools for both single-element and ternary (RGB 
composite) maps. For the RGB composite output, the 
application requires the selection of three different elements, 
each assigned to a color channel (red, green, or blue) to 
best suit the desired visualization. Users can apply a median 
filter to reduce noise or a gradient filter to enhance grain 
boundaries; both functionalities are implemented using the 
Imager package. The median filter smooths the image using 
a 3×3 neighborhood window, computing the median pixel 
value within this interval. The gradient filter, on the other hand, 
highlights edges along the x and y axes, making it particularly 
effective for grain boundaries delimitation. In this tab, the 
dataset is first normalized and converted into an image object, 
which undergoes filtering and further processing. The final 
output map is generated by converting the result image back 
into a data frame.

2.1.4 Cluster Map Function

The Cluster Map tab provides advanced statistical 
analysis using the k-means clustering algorithm. By default, 
R implements the method proposed by Hartigan and Wong 
(1979), which seeks to partition a set of data points into K clusters 
by minimizing the within-cluster sum of squares (WCSS). 
The algorithm begins with an initial set of K cluster centers 
in N-dimensional space and iteratively refines the partitioning 
by evaluating Euclidean distances between each point and 
the cluster centroids, transferring points between clusters 
whenever such a move reduces the WCSS. In the context of 
geochemical mapping, this optimization procedure supports 
the delineation of zones with similar elemental compositions. 
This is particularly effective to highlight mineralogical domains 
that may not be evident through univariate analysis alone.

 The output permits users to interpret spatial patterns 
in compositional variability by generating not only 
a composite cluster map but also individual maps for each 
cluster. Additionally, it provides a statistical overview of 
cluster compositions through boxplots and summary tables, 
displaying concentration ranges, means, and standard 
deviations for each cluster group. These tools improve the 
interpretability of the clustering results and offer a quantitative 

basis for exploring mineralogical segregation and related 
geochemical processes.

Figure 1. Application tab panels, from left to right, Elemental Map, 
Filtered Map, Cluster Map. 

2.1.2 Data wrangling

 The classical data wrangling practices, well established 
within the R programming community, particularly through 
the Tidyverse package (Wickham, 2014), represent 
a fundamental role in this project.  As core exploratory data 
analysis techniques such as data transformation, filtering, and 
plotting are essential to the implementation of a visualization-
oriented application.

Primarily for visualization purposes, the input data  
undergoes several transformations to ensure compatibility 
with the required parameters. These steps  involves treating 
the user input as a matrix, merging datasets from multiple 
elements, and applying operations such as filtering, column 
selection, and data binding. This process merges the individual 
tabular inputs into a more robust and refined dataset, which 
enables pixel-by-pixel normalization and advanced plotting 
using the ggplot2 package (Wickham, 2016).

 In addition to the data preparation for visualization, the 
application also performs several statistical summaries, 
including compositional means, standard deviations, and 
normalization procedures. These are particularly significant 
since the input data is generally expressed in  cps   and must 
be converted to indicate the percentage part of each element in 
the  entire composition of the sample. An essential process for 
generating both individual and integrated geochemical maps.

3. Input data

To ensure the proper functioning and reliability of 
the application, the input data must adhere to  structural  
requirements. Each element to be mapped is represented 
by a single tabular file in CSV format, containing the results 
obtained from the analytical procedure. These files must 
include the  cps  values corresponding to the respective 
element, as this metric serves as the basis for generating the 
spatial distributions in the application. 

For  this  study, the input data were generated using 
a  MicroXRF  analytical system. The equipment produces 
individual files for each analyzed element, where each file 
contains a 2D matrix-like representation of the scanned area. 
Each row corresponds to a pixel in the image, and each column 
reports the cps value measured at that point. The positional 
reference of each pixel is implicit in the row/column structure 
of the file, preserving the spatial integrity of the measurement.

The MicroXRF output also includes a separate summary file 
providing the bulk chemical composition of the scanned area, 
which can be used as a normalization reference.  Consequently, 
the application is able to convert cps values into relative 
concentrations (e.g., in percentage or parts per million), when 
such an external reference is available and provided by the user.  
Such conversion improves the comparability among different 
elements, supports pixel-by-pixel normalization, and facilitates 
more quantitative interpretations of the geochemical data.

This data structure, composed of one matrix per 
element, each in CSV format, plus a reference table, 
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is fully compatible with VisualEasier . It enables efficient and 
automated generation of elemental maps, RGB composites, 
and clustering analysis, without the need for manual 
preprocessing or code manipulation. 

Additionally, any mineral chemistry analytical system 
that meets the aforementioned requirements, such as 
exporting individual elemental files, providing reference 
values for converting cps to concentrations, and maintaining 
spatial positioning of measurements, is compatible with the 
application and can take full advantage of its functionalities.  
Such as SEM/EDS mapping, Electron Microprobe analyses, 
and LA-ICP-MS datasets.

4. Application results and discussions

To demonstrate the capabilities of the application,
MicroXRF data from sulfide-bearing metamorphosed 
volcano-sedimentary rocks. These four rocks are composed 
of silicates (e.g., garnet, chlorite, plagioclase, quartz, 
epidote, tremolite, anthophyllite, among others),  sulfides 
(e.g., galena, chalcopyrite, sphalerite, pyrite, pyrrhotite), and 
minor carbonates (identified as zones with high Ca content, 
once C  and O  are not identified).  Therefore, the analyses 
contain elemental signals for Fe, Zn, S, Ca, Si, Al, Cu, Ti, Pb, 
Mg, and several other elements shown in the next sections. 
These data served as input for testing the different 
functionalities of the application, with each sample being 
processed within a dedicated tab panel. 

4.1 The Elemental Map tab

Alongside enabling the capability to produce individual 
elemental distribution maps with higher resolution and 
optimized data scaling, the application provides additional 
features that strengthen accessibility and facilitate user 
interaction. One notable implementation is the inclusion of 
a wide variety of color palettes, including perceptually uniform 
and colorblind-friendly schemes. These options ensure that 
the visual interpretation of the data remains effective and 
inclusive for a broader audience, without compromising the 
accuracy or clarity of the elemental maps. In the current 
version, users can choose from five different color pallets 
(Figure 2): “viridis”, “inferno”, “plasma”, “magma”, or “turbo”.

The normalization allows for a more correlative relationship 
between different elements . Alongside, understanding 
of elemental spatialization and distribution regarding the 
visualisation of the whole sample in a compilated product gives 
the possibility to interpret associations with high accuracy and 
a more robust general knowledge of the process that thrives 
through the data.

Figure 2. Elemental Map outputs, viridis, turbo, inferno, magma and 
plasma palettes.

4.2 The Filtered Map tab

Filtering plays a crucial role in the preparation of datasets 
for a suitable and effective visualization, especially to highlight 
different aspects of the same sample. In the case of sample 
3 (Figure 3), the median filter was applied to  reduce noise 
and enhance overall readability, while the gradient filter was 
used  to emphasize grain boundaries and structural features. 

Both filtering strategies contribute to a more accurate and 
insightful interpretation of spatial patterns. The ternary RGB 
map interface allows users to assign specific elements 
to each of the red, green, and blue channels, offering 
flexibility in customization of visual outputs and elemental 
relationships interpretation from multiple perspectives. 
On the other hand, the individual elemental map is important 
for the characterization of a single element and to highlight 
its distribution with more focus on the single representation in 
regards to the association between other elements.

Figure 3. Sample 3 Filtered Map outputs, unfiltered, median and 
gradient filters applied.

4.3 The Cluster Map tab

Finally, the clusterization process is fundamental for a more 
robust and deeper analysis of the sample to be interpreted 
(Figure 4). The segmentation of different groups (clusters) 
within the sample based on the elemental composition 
resembles the differentiation between various mineral systems. 
However, it is highly recommended to navigate through the 
other tabs of the application as an initial approach to better 
familiarize  the study object, once it is up to the user to select 
how many clusters the algorithm will use (k). A fewer number 
of clusters could represent less descriptive groups, while 
a higher number directs the algorithm to differentiate similar 
compositional areas, or also grouping noise as an individual 
cluster. Such a limitation can occur in  the application, but 
the flexible processing allows users to attempt clusterization 
through different cluster numbers until the output is suitable 
for the intended analysis.

Alongside the main output (Figure 4a ), boxplots  presenting 
the compositional information of each cluster ( Figure 4b) , 
together with  the summary panel ( Tables 1 and 2),  provide 
essential  quantitative  support for data  interpretation. 
In addition, the individual cluster map ( Figure 4d)  highlights  
the spatial distribution of each cluster. The general 
compositional  patterns revealed by these outputs enable 
further interpretations, not only  regarding the elemental  
distribution within each cluster  but also  in terms of potential 
mineralogical inferences.

Although those interpretations are susceptible to the 
resolution and quality of the input data, the application is 
sensitive and responsive to the dataset processed. Indicating 
that high-resolution data can amplify the spectrum of possible 
interpretations, with more cohesive and direct spatialization of 
the elemental distribution, and consequently, the clusterization.

Table 1. Cluster Map tab compositional mean per cluster table output.

Table 2. Cluster Map tab compositional standard variation per cluster 
table output.

Figure 4.  Cluster Map outputs resulted from sample A analysis. A) 
Cluster Map, B) Cluster Boxplot, C) Individual Cluster Map.

5. Final remarks

The VisualEasier offers a wide range of possibilities for
the visual interpretation of geochemical data, providing a 
robust tool for identifying meaningful connections between 
elemental distribution and mineralogical processes. 
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The application is divided into multiple tabs, each with 
a specific purpose, which enables a complete and structured 
analysis of the sample. Although the combined use of all tabs 
provides a more thorough visualization, the system remains 
flexible. Each tab functions independently, allowing users to 
upload data directly and focus on certain aspects of interest. 
This framework ensures that users can work with the most relevant 
tools for their analysis, without relying on a fixed workflow.

Moreover, the application not only enhances visualization 
but also facilitates its transferability, as users can export the 
results in vectorized PDF format. This feature supports both 
detailed image analysis and straightforward export in other 
image formats directly through the interface.

 The performance of the application is inherently 
dependent on the quality of the input datasets, users who 
provide well-processed and reliable data can maximize its 
analytical potential. In addition, the concise and modular 
design facilitates future extensions, with community feedback 
promoting continuous refinement. This includes not only 
computational enhancements, but also adaptation to a broader 
variety of analytical datasets and sample types.

Availability

The source code for VisualEasier is freely available for 
download and use under an open license via GitHub at: 
<https://github.com/lucasamesquita/Visualeasier>. Users are 
encouraged to explore, adapt, and contribute to the ongoing 
development of the tool. Additionally, an online version of the 
application will soon be available on the Geological Survey 
of Brazil’s official application platform: <https://apps.sgb.gov.
br/visual-easier/>, allowing users to run the tool directly from 
a web browser without requiring local installation.
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Figure 1. Application tab panels, from left to right, Elemental Map, Filtered Map, Cluster Map.
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Figure 2. Elemental Map outputs, viridis, turbo, inferno, magma and plasma palettes.Acc
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Figure 3. Sample 3 Filtered Map outputs, unfiltered, median and gradient filters applied.
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Figure 4.  Cluster Map outputs resulted from sample A analysis. A) Cluster Map, B) Cluster Boxplot, C) Individual Cluster Map.
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Table 1. Cluster Map tab compositional mean per cluster table output.

Table 2. Cluster Map tab compositional standard variation per cluster table output.

Cluster Percentage of  
Rock Composition Si (wt%) Zn (wt%) Fe (wt%) S (wt%) Ca (wt%) Al (wt%) Pb (wt%) Cu (wt%) Mg (wt%) K (wt%) Ti (wt%) Mn (wt%)

1 18.8 7.093 15.203 32.315 21.073 2.856 2.618 5.679 10.263 1.414 0.692 0.399 0.394

2 14.8 44.523 6.016 4.874 2.733 13.139 18.04 3.82 1.321 1.301 3.249 0.742 0.061

3 6.9 75.303 5.185 3.173 2.346 2.635 3.449 4.569 1.132 1.058 0.648 0.462 0.04

4 38.6 7.472 41.882 15.236 18.01 2.859 2.577 5.324 4.132 1.292 0.685 0.343 0.187

5 6.7 28.652 12.423 8.046 13.706 7.841 8.285 13.973 1.586 2.592 2.02 0.776 0.1

6 14.2 28.659 7.641 18.061 4.329 15.217 7.791 3.663 1.493 6.737 4.273 1.911 0.227

Cluster Si (wt%) Zn (wt%) Fe (wt%) S (wt%) Ca (wt%) Al (wt%) Pb (wt%) Cu (wt%) Mg (wt%) K (wt%) Ti (wt%) Mn (wt%)

1 7.142 9.58 8.071 4.436 2.882 2.448 1.113 6.812 1.92 0.649 0.694 0.099

2 10.805 7.285 3.8 2.351 4.981 5.249 1.764 1.335 1.642 1.124 1.206 0.047

3 11.609 6.495 3.056 2.096 2.824 2.645 1.887 1.186 1.445 0.631 0.972 0.038

4 7.595 9.684 5.26 4.169 2.921 2.497 1.483 2.633 1.836 0.642 0.688 0.064

5 14.497 9.362 4.989 6.723 5 5.324 4.102 1.362 2.835 1.14 1.155 0.062

6 8.538 7.545 5.822 3.329 8.026 4.79 1.904 1.598 3.856 1.468 3.606 0.071
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