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This study explores the use of Self-organizing maps (SOM) combined with hierarchical clustering 
to provide insights into the geological differentiation and mineral prospecting in the Serra Dourada 
Granite (SDG), part of the Goiás Tin Province, northern Brasília Belt. After some issues on the geolo-
gical cartography of the SDG based on traditional approaches, such as the interpretation of outcrops 
and the limited geochemistry data, often struggle to capture the complexity of high-dimensional geo-
physical datasets. To address this, we apply unsupervised machine learning techniques to segment air-
borne radiometric data, providing a more nuanced understanding of the SDG internal structure. Using 
airborne gamma-ray data, we employed SOM for dimensionality reduction and data segmentation, su-
pported by hierarchical clustering. This methodology enabled us to identify distinct geological units with 
greater accuracy and resolution than traditional methods such as Principal Component Analysis (PCA). 
The SOM-based approach retained the data's original topology and revealed fine-scale patterns wi-
thin the dataset, distinguishing between areas affected by magmatic processes and those influenced 
by post-magmatic hydrothermalism and supergene leaching. The results indicate that some clusters 
are mainly associated with magmatic differentiation, characterized by average concentrations of potas-
sium (K), equivalent thorium (eTh), and equivalent uranium (eU) and others show evidence of secon-
dary processes, including hydrothermal alteration and weathering. Notably, Cluster 4 is spatially linked 
to REE-enriched plateaus and the Serra Verde Mine, reinforcing its significance for mineral exploration. 
The SOM model proved more effective than PCA at capturing non-linear relationships within the data. 
While PCA provided insights into the primary variance, it did not fully account for the complex geologi-
cal processes at play. In contrast, the SOM model segmented the data into clusters that reflected both 
broad radiometric trends and localized variations, particularly in areas influenced by hydrothermalism 
and supergene processes. Our findings underscore the value of machine learning techniques, parti-
cularly SOM, in geoscientific data analysis. This approach provides a robust framework for integrating 
multivariate radiometric data, offering valuable insights for geological mapping and mineral exploration, 
especially in regions with complex geological histories. The methodology presented here can be adap-
ted to other geological settings, enhancing the accuracy of subsurface mapping and identifying areas 
of economic interest, such as Rare Earth Element (REE) and other critical mineral deposits.
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1 - Introduction

Geological mapping is a technique that involves 
extrapolating information from explicit geological evidence 
to infer the continuity, geometry, and shape of rocks and 
mineralized bodies in a two-dimensional representation 
(Brimhall et al. 2005). While the interpretation of outcrops has 

traditionally been used for geological mapping, remote sensing 
products such as digital elevation maps, satellite images, 
and regional airborne geophysics have become increasingly 
relied upon in recent decades due to their representation 
of physical responses across a systematic sampling. However, 
combining different layers of information from remote sensing 
products into a meaningful map can be time-consuming 
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and confusing, and some information may be unconsidered 
due to the lack of synthesis capacity for high-dimensional 
geoscientific data (Cracknell and Reading 2014; Kuhn et al. 
2018; Lehmann et al. 2023; Nagar et al. 2024).

This research aims to propose a methodology for aiding 
in geological cartography through a quantitative assessment 
of available airborne radiometry. Specifically, the study 
focuses on the segmentation of the Serra Dourada Granite, 
the largest of the Goiás Tin Province (GTP) batholiths, 
northern Brasília Belt, using machine learning algorithms 
to integrate multivariate radiometry (K, eTh, eU, and other 
products derived from these). The batholith lacks detailed 
cartography, primarily due to the high similarity of rocks on the 
outcrop scale and the failure of efforts relying on systematic 
geochemistry to separate the granitic body.

Geological mapping is essential in understanding the 
geological history and mineral endowment of a region, but 
the process can be time-consuming and labor-intensive, 
particularly in regions with complex geology. Recent advances 
in machine learning algorithms have shown promise in aiding 
the geological mapping process by integrating various 
geophysical datasets or for targeting mineral exploration 
(Bergen et al. 2019; Costa et al. 2020; Silva et al. 2022a; Silva 
et al. 2022b; Lawley et al. 2023, 2024; Prado et al. 2020; Ng 
et al. 2023; Parsa et al. 2024; Rodriguez-Galiano et al. 2015).
The paper explores the use of machine learning algorithms 
to integrate different layers of radiometric data to identify 
lithological boundaries and structural features in the case 
study of a granitic batholith in a region with complex geology.

The results demonstrate that machine learning algorithms 
can effectively integrate multivariate data to aid in the geological 
mapping process, significantly reducing the time and effort 
required while improving the accuracy and resolution of the 
resulting maps. This paper highlights the potential of using 
quantitative approaches in geoscience, including machine 
learning algorithms, for aiding the task of geological mapping and 
provide valuable insights for future studies aiming to integrate 
geophysical datasets for geological mapping purposes.

2 - Geological Settings

2.1 - Goiás Tin Province

The Goiás Tin Province (GTP) is a cluster of more than 
a dozen alkaline granites, mainly mineralized in tin with 
greisen association, and intrusive on metasedimentary 
rocks of Ticunzal Formation and Serra da Mesa Group, 
northern Brasília Belt (Figure 1). All bodies are dominantly 
biotite bearing-granites, sometimes muscovitized, with 
a very restricted hornblende facies (Marini and Botelho 1986). 
Post-magmatic changes like albitization and greisenization 
are quite common and associated tin deposits occur in 
albitites, biotitites, greisenized granites, exo and endogreisen, 
pegmatites and quartz veins (Marini and Botelho 1986).

The Serra Dourada Granite (SDG), the biggest batholith 
of the Goiás Tin Province, is a roughly 8-shaped massif with 
batholitic dimensions, with approximately 55 km length and 
13 km width at its broader section. Along with other correlated 
oval-shaped massifs, namely, Serra do Encosto, Serra 
da Mesa and Serra Branca Granites, encompass a series 
of REE,Sn-mineralized granitoids that crop out in mid north 
Goiás State, Brazil. The massifs, especially the SDG, stand 

out in the region as high topographic terranes, contrasting 
with the surrounding geological units of the Serra da Mesa 
Group (not to be confused with the Serra da Mesa Granite). 
The batholith has an ellipsoidal shape, with a N-S predominant 
direction and is strongly deformed showing a brachyanticlinal 
structure with centrifugal foliation (Araujo-Filho et al. 2013).

The granites of the Goiás Tin Province contrast sharply 
with the surrounding rocks in all evaluated radiometric maps, 
displaying K (%), eTh, and eU TC values that are tens to several 
hundred times higher than those of the adjacent lithologies 
(Carvalhêdo et al. 2025; Carvalhêdo et al. 2020). As a result, 
in ternary maps, these granites appear as predominantly white 
ellipsoids with no internal contrast.

This radiometric pattern can be attributed to the felsic and 
evolved nature of these granites, which are typically enriched 
in potassium-bearing minerals such as K-feldspar and 
biotite, as well as accessory phases that concentrate thorium 
and uranium, such as monazite, xenothime, and zircon. In 
contrast, the surrounding metasedimentary and metavolcanic 
rocks, which often consist of lower-t-high-grade metamorphic 
assemblages and mafic to intermediate compositions, tend to 
exhibit much lower K, eTh, and eU values. Depending on their 
specific mineralogical compositions, these units are expected 
to appear as darker or more muted tones in ternary radiometric 
maps. Additionally, within the Goiás Tin Province, pegmatites 
spatially associated with these granites may also show 
localized radiometric anomalies, particularly where they contain 
significant concentrations of radioactive accessory minerals. 
However, the qualitative use of radiometric data has yielded 
limited practical results in distinguishing the internal subdivisions 
of these granites. This limitation underscores the need for a new 
quantitative approach, which this study aims to introduce. 

2.2 - Geochronology and Geological Evolution

The earliest geochronological studies carried out in the 
SDG dates back to the early 1980’s, when Reis Neto (1980, 
1983) and Macambira (1983) reported ages obtained by means 
of the Rb-Sr method. Since those pioneer studies, the authors 
seem to agree on the difficulties faced, due to the geological 
evolution of the granites in the realm of the Tocantins Province 
and Brasília Fold Belt, where complex deformational, orogenic 
and tectono-metamorphic events took place. They stress 
that such events have opened the original isotopic systems 
of rocks and/or minerals, promoting scattering of samples 
away from the best-fit isochrones.

Nevertheless, Reis Neto (1983) carried out analyses 
in the SDG – as well as in the Serra Branca and Serra da 
Mesa Granites – using the Rb-Sr method, which yielded 
ages of approximately 1479 Ma with initial 87Sr/86Sr = 0.790, 
for the SDG. In an attempt to produce more robust data, 
that author combined the measurements of both massifs 
in one single isochron diagram, having obtained 1465 Ma, 
with 87Sr/86Sr =  0.792. However, he emphasizes that those 
numbers are not totally reliable because tectono-thermal 
events and greisenization processes may have caused 
chemical disequilibrium and opening of the isotopic systems. 

Still using the Rb-Sr method in four samples of the SDG, 
Macambira (1983) obtained ages ranging from 1870 – 1259 
Ma, with initial 87Sr/86Sr = 0.710. Combining his own results 
with those from (Reis Neto 1980) (n=7), the numbers are 1653 
± 179 Ma, with 87Sr/86Sr = 0.700. When the two samples with 
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the highest deviation were disregarded, Macambira (1983) 
obtained ages of 1441 ± 105 Ma, with initial 87Sr/86Sr = 0.775, 
and when he considered only the two oldest samples, the 
values are 1885 Ma, with 87Sr/86Sr = 0.701. According to him, 
the latter age is the most reliable because it was yielded by 
a grayish granite sample, indicating that it did not go through 
late-magmatic processes that otherwise oxidize the Fe from 
feldspars, imprinting them a pinkish-red color.

The Rb-Sr dating technique requires the isotopic system to 
remain undisturbed, which is hardly fulfilled by granites such 
as the SDG and others related, given their complex evolution 
involving regionpal tectono-metamorphic events. This is partly 
overcome making use of other methods such as Pb-Pb and 
U-Pb, such as Reis Neto (1983), Pimentel et al. (1991) and Rossi 
et al. (1992) did. The former, combining data from Serra Branca 
and Serra da Mesa, reported Pb-Pb age of 1658 ± 44 Ma for 
those granites. Pimentel et al. (1991), studying the Sucuri and 

Soledade granites (Rio Paranã Subprovince) obtained U-Pb 
zircon ages of 1767 ± 10 Ma and 1769 ± 2 Ma, respectively. 
For the Serra da Mesa granite, that author obtained ages 
approximately 150 Ma younger, which gives about 1618 Ma, 
calculated by a simple subtraction. For the same massif (Serra 
da Mesa), Rossi et al. (1992) obtained Pb-Pb ages of 1580 ± 20 
Ma. Those Pb-Pb and U-Pb ages are still considered today as 
the most reliable ones and, even not being carried out directly 
on the SDG, are considered to represent the age of the Rio 
Tocantins Subprovince as a whole. 

In addition to the datings aforementioned, Reis Neto (1983) 
also reports K-Ar ages in biotites from the SDG, which yielded 535 
Ma. This is similar to 571 ± 24 Ma obtained by Teixeira (2002) using 
the U-Pb method in monazite and to 530 Ma reported by Hasui and 
Almeida (1970), in biotite from the Serra da Mesa granite. Those 
Neoproterozoic ages are attributed to the Brasiliano Orogeny, the 
last major deformational event to act upon the granites.

Figure 1: a) localization of the Tocantins Province in Central Brazil; b) Study area in the central  portion of the Brasília 
Belt; c) Simplified Geological Map of the Goias Tin Province and the placement of the granites from the Tocantins 
and Paranã Sub-Provinces.
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2.3 - Tin and Rare Earth Mineralization

The REE and Tin mineralized deposits of these granites 
are associated with late-to-post-magmatic alteration greisen 
and pegmatite veins. The latter ones cut granites and the 
embedded granite metasediments (Marini and Botelho 1986). 
These greisen occurrences are of great importance in the 
metallogenesis of tin (Marini and Botelho 1986).

The Serra Dourada Granite has been studied as a potential 
region for REE deposits similar to those in Southeastern 
China (Pinto-Ward 2017; Santana et al. 2015; Santana and 
Botelho 2022). The unaltered granites of GTP show high 
content of ∑REE and REE pattern similar to alkaline granite, 
enriched more than 100 times when normalized to chondrite 
(Marini and Botelho 1986). The REE content increased 
during the hydrothermal process, such as albitization and 
biotitization, in the SDG controlled by primary and secondary 
REE minerals (Teixeira and Botelho 2006). This residual 
enrichment of REE in the altered rocks was attributed to the 
alkaline fluids during the hydrothermal process, which not 
mobilized the REE. In the SDG lateritic profile, the average 
REE enrichment is higher than the parent rock concentration, 
contributing tohe Serra Verde deposit (Pinto-Ward 2017). 
And other granite bodies of this province could have the 
similar potential of this deposit type (Costa Filho 2020; Vieira 
et al. 2019; Zapata and Botelho 2018).

The REE deposit in the SDG is mainly concentrated in the 
saprolite horizon and strongly enriched in the clay layer at the 
base of this horizon. The REE enrichment is 1,5 to 10 times 
compared to the parent bedrock (Pinto-Ward 2017). In addition 
to the SDG, other granite bodies of the GTP in the Rio Paranã 
subprovince were studied as potential REE deposits (Costa 
Filho 2020; Vieira et al. 2019; Zapata and Botelho 2018)

3 - Materials and Methods

3.1 - Data Source

For the total study area, shown in Figure 1, airborne 
radiometric data available by the Geological Survey of Brazil 
were integrated using the Gridknit methodology of Oasis 
Montaj. Three projects were used in this integration, they 
were: “Complemento do Tocantins”, “Arco Magmático de Mara 
Rosa” and “Paleo-Neoproterozoico do Nordeste de Goiás” 
(Alves et al. 2022; Silva and Alves 2021). The first acquired 
by the Geological Survey of Brazil and the others by the 
state government of Goiás. These airborne radiometric data 
have spacing between flight lines of 500m and nominal flight 
height of 100m. Data was interpoled to a cell size of 125m. 
Subsequently, the data was cropped for comprinsing only 
data corresponding to the Serra Dourada Granite, with a total 
of 29,675 samples with 6 variables.

3.2 - Data preparation and dimensionality reduction

In addition to traditional channels of Airborne Gamma-Ray 
data, i.e., Potassium (K), equivalent Thorium (eTh), equivalent 
Uranium (eU) and Total Count (TC), we calculated three 
more variables: Uranium Anomalous (Ud) and Potassium 
Anomalous (K), based on the methodology proposed 
by Saunders et al. (1993) and the K/eTh ratio.The feature data 
was prepared to optimize the processing steps according 

to some criteria. Radiometric data was first corrected 
to remove any negative value founded in the conversion 
of measured signal to equivalent concentration. A constant 
was added to this step to level correct negative values without 
severely impacting the distribution parameters. No influence 
of vegetation was observed in the dataset (Silva and Graça 
2018) taking as case study an area in the center  of the 
Rondônia State, Amazonia, northern Brazil, where wooded 
and deforested areas are frequently juxtaposed. The control 
of the wooded areas is made using Landsat satellite images, 
by the calculation of the Normalized Difference Vegetation 
Index (NDVI, as the batholith remained entirely covered by 
native vegetation at the time of the airborne survey. 

As data have different units and scale values, it is necessary 
to normalize the distributions in order to keep the same values 
of ranges, putting the variances in the same order of magnitude. 
It is specially needed for applying such techniques as Principal 
Component Analysis (PCA), used in this work and described 
in the following sections. For this purpose, we applied a min-
max feature scaling in all input data for equalizing the range 
in a 0 to 1 distribution (Figure 2a).

As three of the four channels of Radiometric data 
corresponds to equivalent concentrations of chemical 
elements (Potassium, Thorium, and Uranium), these features 
can be considered compositional (Aitchison 1982, 2008), 
as they are ideally positive and interfere on each other, 
as the ideal concentration of any chemical composes 
is equal to 100%. For this specific work, we used a Centered 
Log-Ratio (CLR) transformation (Figure 2b). 

For the last step of data preparation, we evaluate the 
relation between the features and applied PCA. The PCA 
is a multivariate method based on algebraical principles (e.g., 
cross product and inner product of matrices) that creates 
mechanisms to rotate the vectorial space and allows the definition 
of new features that are orthogonal to each other (eigenvectors 
or components) and have a particular length (eigenvalues 
associated with the variance of data) that represents the data 
with minimum redundance and vector optimization. PCA is 
commonly used to dimensionality reduction (Grunsky and Arne 
2020), as the first components explain more of data variance, 
the last ones is many times negligible. Despite generating 
 6 components at the end (Figure 2c), for this work, only the 
first four components components corresponds to 99.6% of the 
data variance and were considered to this work.

3.3 - Data segmentation

In this work, we ally Self Organing Maps and Hierarchical 
Clustering for data segmentation, i.e. the agroup similar data 
together and discriminate between different feature signatures 
based on dissimilarity.

Self-organizing maps (SOM) are a type of unsupervised 
neural network algorithm that can be used for data 
visualization and clustering. According to Kohonen (1998), 
SOM use a competitive learning process to identify patterns 
in the input data and organize them onto a low-dimensional 
map. The algorithm works by creating a set of nodes (or units), 
each of which represents a different location on the map, 
and then iteratively through different epochs adjusting 
the weights associated with these nodes to minimize the 
difference between the input data and the node weights 
(Kohonen 1998). As a result, similar input vectors are mapped 
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Figure 2: Representation of Input Features in Maps. a) raw data rescaled to a 0-1 distribution; 
b) Input features after a CLR transformation; c) Maps of PC1 to PC6 rescaled to represent 
internal variation.
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to nearby nodes on the map, while dissimilar vectors are 
mapped to more distant nodes (Vesanto and Alhoniemi 2000). 
This organization of the input data onto the map provides 
a visualization of the patterns in the data that can be useful 
for understanding complex relationships between variables 
(Kaski et al. 1998). Additionally, clustering of the input data 
can be achieved by grouping together nodes on the map that 
have similar weights, thus identifying groups of similar data 
points (Vesanto and Alhoniemi 2000). SOM have been applied 
in various fields, including image analysis, natural language 
processing (Kohonen 1998) and data mining (Vesanto and 
Alhoniemi 2000), and geoscience, due to their ability to reveal 
complex multivariate patterns within data (Bação et al. 2005; 
Carneiro et al. 2012; Chudasama et al. 2022; Kebonye et al. 
2021; Torppa et al. 2019).

As pointed out by Vesanto and Alhoniemi (2000), SOM 
has been shown to be effective in visualizing complex 
relationships between geological and geophysical data in 
a more intuitive and interpretable way than traditional statistical 
methods. Similarly, Filippi et al. (2010) employed SOM in the 
classification of remote sensing data for lithological mapping, 
demonstrating its effectiveness in identifying lithological 
units and mapping geological structures. Additionally, SOM 
has been applied in mineral exploration, such as in the work 
of Chudasama et al. (2022), where it was used to identify 
mineralization zones based on geophysical data and geology 
interpreted layers. These studies demonstrate the potential of 
SOM in aiding geoscientific data analysis and interpretation.

Hierarchical clustering is especially useful for geoscience 
data segmentation, where the goal is frequently to identify 
meaningful groups within complex, multivariate datasets. 
Unlike methods that require a predetermined number of 
clusters, Hierarchical Clustering offers a more adaptable 
approach by allowing for the exploration of clustering structure 
at various levels of granularity. This feature is especially 
useful in geological mapping and mineral prospecting, where 
natural divisions in the data may not be immediately apparent. 
By combining Hierarchical Clustering with techniques like Self-
organizing maps (SOM), we can improve the identification 
of coherent geological units while revealing subtle patterns 
that other clustering methods may miss.

For this work, we implemented SOM segmentation with 
different arrays of nodes and epochs in order to identify 
the best fit. After selecting the best performing model, we 
clustered the nodes based on their inputs for each variable 
through a visual estimation of the dissimilarity matrix 

and then transferred this assignment to the original data. 
In all SOM models, we used hexagonal toroidal topology 
with Euclidean distance and a Gaussian Neighborhood 
Function (please refer to Data Availability session to access 
the full specifications).

4 - Results and Discussions

4.1 - Dimensionality reduction

In this study, Principal Component Analysis (PCA) 
was employed as a dimensionality reduction technique. 
The first four principal components (PC1 to PC4) account 
for approximately 99% of the total data variance (Figure 3), 
indicating that the contributions of PC5 and PC6 are nearly 
negligible. Therefore, these higher-order components were 
not considered in subsequent analyses.

The solely PCA is valuable to provide insights to the 
interpreter. The variables eU and eTh are highly correlated and 
their representing vectors in Figure 3 usually points to same 
direction, implying that also in PCA space this correlation 
is true, as expected for igneous rocks. However, some features 
are better explained in determined PC, as example, eU and Uk 
are better represented in the positive values of PC3, while K, 
K/eTh and Kd are represented in the negative values of the 
same component.

PCA is inherently a linear technique and may not fully 
capture complex, non-linear relationships present in the 
data. In our analysis, we observed that the fourth principal 
component (PC4) exhibits non-linear relationships compared 
to the other three principal components (PC1 to PC3). 
This observation suggests that traditional linear methods like 
PCA may not entirely capture the underlying data behavior. 
Despite its limitations, PCA still serves as a practical 
preliminary step for data exploration and visualization, 
reducing dimensionality and highlighting key features before 
applying more advanced non-linear techniques.

4.2 - SOM model

The SOM model iterations on the training length (rlen) 
and the number of units across different grid arrays allowed 
the scanning of the compositional variation on the SDG using 
different parameters (Figure 4). This iteration also provides 
valuables insights about how SOM works on retaining the 
data original topology and how an excess of nodes can leeds 
to overfit in noisy data.

Models with lower length of training (rlen = 10 epochs) 
are easier to compute, but often are more simplistic than the 
others, and thus, they tend to fail in capturate all the inner 
variations of the data structure. On the other hand a longer 
length of training (rlen = 1000 epochs) are computational 
onerous, and not necessarily it comes with improvements 
on segmentation. In the same way, the Figure 4 shows that 
increment of the number of units can also leads to unsatisfying 
clustering, with the aspects of output models for this arrange 
being more noisy than the others with a looser array.

Therefore, we considered for this work a intermediate model 
of a grid array of 24 x 32 units treined for 300 epochs the best 
match for the purpose of this work, in the way that this is not an 
overtrained model and the used array of units is able for capturing 
the data internal structuring without apparent noise effect.

Table 1: Statistical summary of airborne gamma ray data for selected 
features. Abbreviations: K (Potassium), eTh (equivalent Thorium), eU 
(equivalent Uranium), TC (Total Count), Kd (Anomalous Potassium), 
and Ud (Anomalous Uranium)

Statistics K (%) eTh (ppm) eU (ppm) TC Kd Ud

Min 0.3274 3.777 0.07418 2.424 -6.5641 -6.08414

1st Quartile 1.649 30.006 2.3474 13.529 -0.5413 -0.49619

Median 2.2333 42.869 3.17032 17.76 0.1653 0.05227

Mean 2.2837 44.995 3.39466 18.569 0 0

3rd Quartile 2.892 54.453 4.23792 22.435 0.6867 0.56553

Max. 5.0667 152.62 10.95191 54.492 2.7726 3.06004
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4.3 - Data segmentation

After training the SOM model, we analyzed the SOM units 
using a dissimilarity matrix to visually estimate the optimal 
number of clusters (Figure 5a). The dissimilarity matrix, created 
by ranking and sorting the Euclidean distances between paired 
units, allowed us to observe regions of similarity and dissimilarity 
across the map. Clusters were identified as groups of units with 
relatively small distances, as indicated by the blue rectangles in 
Figure 5a. These regions of lower distances near the diagonal 
of the matrix suggest coherent groupings within the dataset, 
providing insight into the internal structure of the SOM.

Once the ideal number of clusters was established, 
we applied a hierarchical clustering approach to further 
refine the segmentation. The resulting dendrogram (Figure 
5b) clearly shows a distinction between dominant clusters, 
such as Clusters 1 to 3, 5, and 7, which represent the majority 
of the dataset, and less frequent clusters, like Clusters 4, 6, and 
8. The hierarchical clustering process enabled us to visualize 
how data points are grouped at different levels of similarity, 
with clusters merging at higher levels of the dendrogram, 
reflecting increasing dissimilarity.

Visualizing the segmented SOM units through Kohonen 
Maps (Figure 5c to j) provided further insights into the spatial 
distribution and internal structure of the clusters. Each map 
reflects how the different clusters are represented across the 
SOM grid, with clear differentiation between various zones. 
This internal structure mirrors the original data architecture, 
allowing us to interpret these clusters as reflecting 
distinct geological processes affecting the Serra Dourada 
Granite (SDG).

The Kohonen Maps also revealed subtle patterns in the 
distribution of radiometric properties, suggesting that the internal 
structure of the SDG is more complex than previously thought. 
The identified clusters highlight areas of potential mineralogical 
interest, such as zones with higher thorium or potassium 
content, which could be associated with REE (Rare Earth 
Element) mineralization or other economic mineral deposits. 
This detailed segmentation not only enhances our understanding 
of the compositional variation within the SDG but also provides 
a framework for more targeted geological mapping and mineral 
exploration., representing variations on the granite surface. 
These variations may be attributed to magmatic, hydrothermal, 
or supergenic processes that have affected the granitic rock.

Figure 3: The matrix illustrates three different ways of analyzing the PCA output. The main diagonal displays the distribution 
of values for each principal component across the entire dataset. The upper diagonal matrix shows bivariate plots for all 
possible combinations of principal components, with vectors indicating the correlation of the input features with each axis. 
The lower diagonal matrix represents the data distribution for each pairwise combination of principal components, with each 
point color-coded to indicate the goodness of fit to the represented plane, as measured by the square cosine method.
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Figure 4: Different iterations on SOM varying the grid array and the length of training with number of clusters fixed (8 groups). 
The optimum model regarding the balance of noise and rlen is outlined in red.
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Figure 5: Clustering representation across differente methods: a) dissimilarity matrix for each SOM node calculated by Euclidean 
Distance; b) Hierarchical dendogram segmented according to the dissimilarity for the eight selected clusters; c to h) Kohonen 
Maps with 24 x 32 array showing the mean value for each feature; i) Kohonen Map represented by the mean euclidean distance 
from neighbours; j) final cluster assignment on Kohonen maps for the designed model.

4.4 - Cluster Interpretation

Based on the median values of each cluster for the 
analyzed variables (Figure 6), Clusters 1, 3, and 5 exhibit 
average concentrations of K, eTh, and eU, with medium 
to low levels of Ud, Kd, and the K/eTh ratio. In contrast, 
Clusters 2, 4, and 6 to 8 display a more irregular pattern, 
with relative enrichment in certain variables. Specifically, 
Clusters 2 and 4 are significantly enriched in eTh and eU 
but show lower concentrations of K, Kd, Ud, and the K/eTh 
ratio. This signature suggests secondary processes, such as 
post-magmatic hydrothermal activity (e.g., albitization) and/
or leaching of mobile elements due to lateritic weathering, 
which could explain the loss of potassium content. 
A similar interpretation applies to Cluster 6, which shows an 
intermediate composition for all radioelements.

In fact, Clusters 2 and 4 are spatially correlated with areas 
identified as hydrothermally alterad by Pinto-Ward (2017), 
specially with Cluster 4 corresponding to plateaus related 
to leached and laterized domains associated with the Serra da 
Verde Mine and other REE Ionic Clay occurences (Figure 7).

Therefore, Clusters 1, 3, and 5 may represent areas where 
magmatic processes have played a significant role, given 
their prevalence and distinct multivariate signatures. These 
clusters suggest magmatic differentiation within the granite 
body, with variations in mineral composition that could justify 
differences in radioelements. In contrast, Clusters 4, 6, and 8, 
 being less frequent and spatially confined, are likely associated 
with hydrothermal or supergene processes. These processes 
may have altered the original granitic composition through fluid 
circulation or weathering, resulting in localized enrichment 
or depletion of specific elements.
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Cluster 7, characterized by the lowest concentrations 
of eTh, K, and eU, likely represents alluvial and/or elluvial 
sedimentation or even schists and quartzites of the Serra 
da Mesa Group surrounding the SDG intrusion (Figure 7). 
This interpretation is supported by the spatial distribution 
of Cluster 7, which is predominantly located along the border 
of the SDG body.

4.5 - Comparison with PCA

The SOM combined with hierarchical clustering proved 
more efficient at differentiating the internal structure of the 
SDG compared to the first four principal components (PCs) 
of PCA. While the first four PCs capture the major variances 
in the dataset, their linear nature limits the ability to fully 
resolve the complex, non-linear relationships within the data. 
The clusters derived from the SOM, on the other hand, were 
able to segment the dataset more effectively, capturing both 
large-scale patterns and subtle, localized variations.

For instance, while PC1 highlights broad radiometric 
trends, the SOM-based clusters, particularly Clusters 1, 2, 
and 5, align more closely with distinct compositional zones, 
offering better spatial resolution. Additionally, PCs like PC3 
and PC4 reveal only partial insights into potassium and 
thorium variations, whereas the SOM clusters capture finer 
details, such as areas impacted by hydrothermal or supergenic 
processes (e.g., Clusters 4 and 8), that PCA alone cannot 
fully distinguish. This demonstrates the enhanced capability 
of the SOM + hierarchical clustering approach in revealing the 
complex geological signature of the SDG.

5 - Conclusions

This study presents a novel approach to geological mapping 
and mineral prospecting of the Serra Dourada Granite (SDG) 
using Self-organizing maps (SOM) combined with hierarchical 
clustering. The proposed methodology successfully integrates 
airborne radiometric data and provides an enhanced framework 

Figure 6: a to h)radar plot for cluster signature, showing the median value of each variable for all eight selected 
clusters/ i) All clusters grouped in the same plot.
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for data segmentation compared to traditional linear methods, 
such as Principal Component Analysis (PCA). By leveraging 
unsupervised machine learning techniques, we were able 
to overcome the limitations posed by the complex geology 
of the SDG, allowing us to identify meaningful geological units 
with greater accuracy and resolution.

Our findings indicate that the SOM-based clustering 
approach is particularly effective in capturing both large-scale 
and localized variations within the SDG. Clusters 1, 3, and 5 are 
probably associated with mainly magmatic processes, showing 
average concentrations of potassium (K), equivalent thorium 
(eTh), and equivalent uranium (eU), whereas Clusters 2, 4, 

Figure 7: Detailed map of the Serra Dourada Granite (SDG) with the proposed subdivision based on the SOM model shows 
the distribution and signature of each cluster. The detailed map highlights the predominance of Clusters 1 (black), 2 (dark purple), 
and 4 (light purple) in the southern portion of the SDG batholith. Notably, Cluster 4 is associated with the plateaus linked to Rare 
Earth Element (REE) mineralization, which aligns with the location of the Serra Verde Mine.

and 6 to 8 exhibit signatures of secondary processes such as 
post-magmatic hydrothermalism and weathering, contributing 
to the enrichment or depletion of certain radioelements. 
Notably, Cluster 4 correlates with REE-enriched plateaus and 
is spatially associated with the Serra Verde Mine, highlighting 
the cluster segmentation’s relevance for mineral exploration. 
The location and correlated signatures of Cluster 4 can also 
serve as an exploration guide for REE deposits in the SDG and 
surrounding bodies within the Goiás Tin Province, as it likely 
represents the superposition of post-magmatic hydrothermal 
processes and supergene leaching that resulted in the “Serra 
Verde type” ionic clay mineralizations.
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Furthermore, the SOM method demonstrated superior 
performance compared to PCA in differentiating non-linear 
relationships within the dataset. While PCA provided valuable 
insights into the primary variance in the data, it was unable 
to fully capture the complexity of the geological processes 
reflected in the multivariate dataset. The SOM model, on the 
other hand, effectively retained the data’s original topology and 
revealed fine-scale compositional patterns, including regions 
influenced by hydrothermal and supergene processes.

The results of this study underscore the potential 
of machine learning techniques, particularly SOM, 
in geoscientific data analysis. By offering a more robust and 
nuanced understanding of the SDG’s internal structure, this 
approach can serve as a valuable tool for future geological 
mapping efforts and mineral exploration initiatives, particularly 
in regions with similar complex geology. Additionally, the 
methodology can be adapted and applied to other geological 
settings to enhance the accuracy of subsurface mapping and 
identify areas of economic interest, such as zones of REE and 
other critical mineral deposits.

Acknowledgments

We acknowledge the Geological Survey of Brazil for 
supplying the data. Some of the authors are employees 
 of the Geological Survey of Brazil and this work was conducted 
as part of their duties. No funding was received from external 
sources outside the Brazilian Government through the 
Geological Survey of Brazil activities. We thank the generosity 
of Colin Farquharson during reviewing this manuscript, as well 
as the handling editors Carlos Gabriel Asato and Evandro Luiz 
Klein. Additionally, the authors acknowledge the use of Large 
Language Models for grammar checking and enhancing 
the writing quality.

Data availability

Data and code used for this work can be found at the 
following GitHub repository <https://github.com/gferrsilva/
SOMSerraDourada>. The script was written in R language, version 
4.3.1. All the dependancies are described on the repository.

Authorship credits

References

Aitchison, J. 1982. The statistical analysis of compositional data. 
Journal of the Royal Statistical Society, 44(2), 139-160. https://doi.
org/10.1111/j.2517-6161.1982.tb01195.x   

Aitchison, J. 2008. The single principle of compositional data 
analysis, continuing fallacies, confusions and misunderstandings 
and some suggested remedies. In: Compositional Data Analysis 
Workshop, 3, 1–28.

Author A B C D E F
GFS
MVF
LTC
IVS
NFB

A - Study design/ Conceptualization   B - Investigation/ Data acquisition 
C - Data Interpretation/ Validation   D - Writing 
E - Review/Editing    F - Supervision/Project administration

Alves F.M., Silva E.R., Silva A.B. 2022. Atlas aerogeofísico do estado de 
Goiás. Goiânia, SGB-CPRM. Available online at: https://rigeo.sgb.gov.
br/handle/doc/23325 / (accessed on 31 March 2025).

Araujo-Filho J.O., Silva G.F., Ferreira V.N., Prado E.M.G., Lima E.A.M., 
Braga A.A., Zedes A.L., Toledo C.L.B., Silva V.S., Borges W., Carmelo 
A.C., Almeida T. 2013. Geologia e características estruturais do 
Projeto Mata Azul (GO), Faixa Brasília Setentrional. In: Simpósio de 
Geologia do Centro Oeste, 13, 1–5.

Bação F., Lobo V., Painho M. 2005. The self-organizing map, the Geo-SOM, 
and relevant variants for geosciences. Computers & Geosciences, 
31(2), 155–163. https://doi.org/10.1016/j.cageo.2004.06.013 

Bergen K.J., Johnson P.A., Hoop M.V., Beroza G.C. 2019. Machine 
learning for data-driven discovery in solid Earth geoscience. Science, 
363(6433). https://doi.org/10.1126/science.aau0323 

Brimhall G.H., Dilles J.H., Proffett J.M. 2005. The role of geologic mapping 
in mineral exploration. In: Doggett M.D, Parry J.R. Wealth creation in 
the minerals industry. Society of Economic Geologists, p. 221–241. 
https://doi.org/10.5382/SP.12.11

Carneiro C.C., Fraser S.J., Crósta A.P., Silva A.M., Barros C.E.M. 2012. 
Semiautomated geologic mapping using self-organizing maps and 
airborne geophysics in the Brazilian Amazon. Geophysics, 77(4). 
https://doi.org/10.1190/geo2011-0302.1 

Carvalhêdo A.L., Carmelo A.C., Botelho N.F. 2020. Geophysical-
geological model of the Pedra Branca massif in the Goiás Tin 
Province, Brazil. Journal of South American Earth Sciences, 101, 
102593. https://doi.org/10.1016/j.jsames.2020.102593

Carvalhêdo A.L., Carmelo A.C., Lima J.P.D., Botelho N.F., Chornobay 
A. 2025. Investigation of radiogenic heat production in granites of the 
Goiás Tin Province, Central Brazil. Geothermics, 125, 103183. https://
doi.org/10.1016/j.geothermics.2024.103183

Chudasama B., Torppa J., Nykänen V., Kinnunen J. 2022. Target-scale 
prospectivity modeling for gold mineralization within the Rajapalot Au-
Co project area in northern Fennoscandian Shield, Finland. Part 2: 
Application of self-organizing maps and artificial neural networks for 
exploration targeting. Ore Geology Reviews, 147, 104936. https://doi.
org/10.1016/j.oregeorev.2022.104936

Costa Filho D.S. 2020. Caracterização mineralógica e proveniência 
de Monazita-(Ce), Xenotima-(Y) e Zircão de Placer na Província 
Estanífera de Goiás: estão estes minerais relacionados com 
o granito tipo-A Serra Dourada? MSc Dissertation, Universidade de 
Brasília, Brasília, 49 p. Available online at: http://repositorio2.unb.br/
handle/10482/39482 / (accessed on 31 March 2025).

Costa I.S.L., Serafim I.C.C.O., Tavares F.M., Polo H.J.O. 2020. 
Uranium anomalies detection through Random Forest regression. 
Exploration Geophysics, 51, 555–569. https://doi.org/10.1080/08123
985.2020.1725387 

Cracknell M.J., Reading A.M. 2014. Geological mapping using remote 
sensing data: A comparison of five machine learning algorithms, their 
response to variations in the spatial distribution of training data and 
the use of explicit spatial information. Computers & Geosciences, 63, 
22–33. https://doi.org/10.1016/j.cageo.2013.10.008

Filippi A., Dobreva I., Klein A.G., Jensen J.R. 2010. Self-Organizing Map-
based Applications in Remote Sensing. In: Matsopoulos G.K. (ed.) 
Self-Organizing Maps. InTech. https://doi.org/10.5772/9163

Grunsky E.C., Arne D. 2020. Mineral-resource prediction using advanced data 
analytics and machine learning of the QUEST-South stream-sediment 
geochemical data, Southwestern British Columbia (Parts of NTS 082, 
092). Geoscience BC Report 2020-06. Available online at: https://cdn.
geosciencebc.com/project_data/GBCReport2020-06/GBCR%202020-
06%20Mineral-Resource%20Prediction%20Using%20Advanced%20
Data%20Analysis%20and%20Machine%20Learning%20revised%20
November%2013%202020.pdf / (accessed on 31 March 2025).

Hasui Y., Almeida F.F.M. 1970. Geocronologia do centro-oeste brasileiro. 
Boletim da Sociedade Brasileira de Geologia, 19(1). Available online 
at: http://boletim.siteoficial.ws/pdf/1970/19_1-5-25.pdf / (accessed on 
31 March 2025).

Kaski S., Honkela T., Lagus K., Kohonen T. 1998. WEBSOM - Self-
organizing maps of document collections. Neurocomputing, 21(1-3), 
101–117. https://doi.org/10.1016/S0925-2312(98)00039-3 

Kebonye N.M., Eze P.N., John K., Gholizadeh A., Dajčl J., Drábek O., 
Němeček K., Borůvka L. 2021. Self-organizing map artificial neural 
networks and sequential Gaussian simulation technique for mapping 
potentially toxic element hotspots in polluted mining soils. Journal 
of Geochemical Exploration, 222, 106680. https://doi.org/10.1016/j.
gexplo.2020.106680 

https://doi.org/10.1111/j.2517-6161.1982.tb01195.x
https://doi.org/10.1111/j.2517-6161.1982.tb01195.x
https://rigeo.sgb.gov.br/handle/doc/23325
https://rigeo.sgb.gov.br/handle/doc/23325
https://doi.org/10.1016/j.cageo.2004.06.013
https://doi.org/10.1126/science.aau0323
https://doi.org/10.5382/SP.12.11
https://doi.org/10.5382/SP.12.11
https://doi.org/10.1190/geo2011-0302.1
https://doi.org/10.1190/geo2011-0302.1
https://doi.org/10.1016/j.jsames.2020.102593
https://doi.org/10.1016/j.geothermics.2024.103183
https://doi.org/10.1016/j.geothermics.2024.103183
https://doi.org/10.1016/j.oregeorev.2022.104936
https://doi.org/10.1016/j.oregeorev.2022.104936
http://repositorio2.unb.br/handle/10482/39482
http://repositorio2.unb.br/handle/10482/39482
https://doi.org/10.1080/08123985.2020.1725387
https://doi.org/10.1080/08123985.2020.1725387
https://doi.org/10.1016/j.cageo.2013.10.008
https://doi.org/10.5772/9163
https://cdn.geosciencebc.com/project_data/GBCReport2020-06/GBCR%202020-06%20Mineral-Resource%20Prediction%20Using%20Advanced%20Data%20Analysis%20and%20Machine%20Learning%20revised%20November%2013%202020.pdf
https://cdn.geosciencebc.com/project_data/GBCReport2020-06/GBCR%202020-06%20Mineral-Resource%20Prediction%20Using%20Advanced%20Data%20Analysis%20and%20Machine%20Learning%20revised%20November%2013%202020.pdf
https://cdn.geosciencebc.com/project_data/GBCReport2020-06/GBCR%202020-06%20Mineral-Resource%20Prediction%20Using%20Advanced%20Data%20Analysis%20and%20Machine%20Learning%20revised%20November%2013%202020.pdf
https://cdn.geosciencebc.com/project_data/GBCReport2020-06/GBCR%202020-06%20Mineral-Resource%20Prediction%20Using%20Advanced%20Data%20Analysis%20and%20Machine%20Learning%20revised%20November%2013%202020.pdf
https://cdn.geosciencebc.com/project_data/GBCReport2020-06/GBCR%202020-06%20Mineral-Resource%20Prediction%20Using%20Advanced%20Data%20Analysis%20and%20Machine%20Learning%20revised%20November%2013%202020.pdf
http://boletim.siteoficial.ws/pdf/1970/19_1-5-25.pdf
https://doi.org/10.1016/S0925-2312(98)00039-3
https://doi.org/10.1016/j.gexplo.2020.106680
https://doi.org/10.1016/j.gexplo.2020.106680


Ferreira da Silva et al. - JGSB 2025, vol 8, n 1, 51 - 63 63

Kohonen T. 1998. The self-organizing map. Neurocomputing, 21(1-3), 
1–6. https://doi.org/10.1016/S0925-2312(98)00030-7 

Kuhn S., Cracknell M.J., Reading A.M. 2018. Lithologic mapping using 
Random Forests applied to geophysical and remote-sensing data: 
A demonstration study from the Eastern Goldfields of Australia. 
Geophysics, 83, B183–B193. https://doi.org/10.1190/geo2017-0590.1 

Lawley C.J.M., Gadd M.G., Parsa M., Lederer G.W., Graham G.E., Ford 
A. 2023. Applications of natural language processing to geoscience 
text data and prospectivity modeling. Natural Resources Research, 
32, 1503–1527. https://doi.org/10.1007/s11053-023-10216-1 

Lawley C.J.M., Haynes M., Chudasama B., Goodenough K., Eerola T., 
Golev A., Zhang S.E., Park J., Lèbre E. 2024. Geospatial data and 
deep learning expose ESG risks to critical raw materials supply: the 
case of lithium. Earth Science, Systems and Society, 4. https://doi.
org/10.3389/esss.2024.10109

Lehmann J., Brower A.M., Owen-Smith T.M., Bybee G.M., Hayes B. 2023. 
Landsat 8 and Alos DEM geological mapping reveals the architecture 
of the giant Mesoproterozoic Kunene Complex anorthosite suite 
(Angola/Namibia). Geoscience Frontiers, 14(5), 101620. https://doi.
org/10.1016/j.gsf.2023.101620 

Macambira M.J.B. 1983. Ambiente geológico e mineralizações 
associadas ao granito Serra Dourada (extremidade meridional) Goiás. 
MSc Dissertation, Universidade Federal do Pará, 132 p. Available 
online at: https://repositorio.ufpa.br/jspui/handle/2011/14907 / 
(accessed on 31 March 2025).

Marini J.O., Botelho N.F. 1986. A província de granitos estaníferos 
de Goiás. Revista Brasileira de Geociências, 16(1), 119–131. https://
doi.org/10.25249/0375-7536.1986119131 

Nagar S., Farahbakhsh E., Awange J., Chandra R. 2024. Remote sensing 
framework for geological mapping via stacked autoencoders and 
clustering. Advances in Space Research, 74(10), 4502–4516. https://
doi.org/10.1016/j.asr.2024.09.013 

Ng W., Minasny B., McBratney A., De Caritat P., Wilford J. 2023. Digital 
soil mapping of lithium in Australia. Earth System Science Data, 15(6), 
2465–2482. https://doi.org/10.5194/essd-15-2465-2023 

Parsa M., Lawley C.J.M., Cumani R., Schetselaar E., Harris J., Lentz D.R., 
Zhang S.E., Bourdeau J.E. 2024. Predictive modeling of Canadian 
carbonatite-hosted REE +/− Nb deposits. Natural Resources Research, 
33, 1941-1965. https://doi.org/10.1007/s11053-024-10369-7 

Pimentel M.M., Heaman L., Fuck R.A., Marini O.J. 1991. U-Pb zircon 
geochronology of Precambrian tin-bearing continental-type acid 
magmatism in central Brazil. Precambrian Research, 52(3-4), 321–
335. https://doi.org/10.1016/0301-9268(91)90086-P 

Pinto-Ward C. 2017. Controls on the enrichment of the Serra Verde rare 
earth deposit, Brazil. PhD Thesis, Imperial College of London, London, 
442 p. https://doi.org/10.25560/78794  

Prado E.M.G., Souza Filho C.R., Carranza E.J.M., Motta J.G. 2020. 
Modeling of Cu-Au prospectivity in the Carajás mineral province 
( Brazil ) through machine learning : Dealing with imbalanced training 
data. Ore Geology Reviews, 124, 103611. https://doi.org/10.1016/j.
oregeorev.2020.103611 

Reis Neto J.M. 1980. Geocronologia dos granitos da região Centro-oeste. 
Seminários Gerais, Instinto de Geociências da USP, São Paulo, 106.

Reis Neto J.M. 1983. Evolução geotectônica da Bacia do Alto Tocantins, 
Goiás. MSc Dissertation, Universidade de São Paulo, São Paulo, 98 p. 
https://doi.org/10.11606/D.44.1983.tde-11092015-121945 

Rodriguez-Galiano V., Sanchez-Castillo M., Chica-Olmo M., Chica-Rivas 
M. 2015. Machine learning predictive models for mineral prospectivity: 
An evaluation of neural networks, random forest , regression trees and 
support vector machines. Ore Geology Reviews, 71, 804–818. https://
doi.org/10.1016/j.oregeorev.2015.01.001 

Rossi P., Andrade G.F., Cocherie A. 1992. The 1.58 Ga A-type granite 
of Serra da Mesa (GO): an example of NYF fertile granite pegmatite. 
In: Congresso Brasileiro de Geologia, 37, 389–390. Availabe online 
at: http://www.sbgeo.org.br/home/pages/44#Anais_de_Congressos_
Brasileiros_de_Geologia / (accessed on 31 March 2025).

Santana I.V., Botelho N.F. 2022. REE residence, behaviour and recovery 
from a weathering profile related to the Serra Dourada Granite, Goiás/
Tocantins States, Brazil. Ore Geology Reviews, 143, 104751. https://
doi.org/10.1016/j.oregeorev.2022.104751 

Santana I.V., Wall F., Botelho N.F. 2015. Occurrence and behavior 
of monazite-(Ce) and xenotime-(Y) in detrital and saprolitic 
environments related to the Serra Dourada granite, Goiás/Tocantins 
State, Brazil: Potential for REE deposits. Journal of Geochemical 
Exploration, 155, 1–13. https://doi.org/10.1016/j.gexplo.2015.03.007 

Saunders D.F., Burson R.K., Branch F.J., Thompson K. 1993. Relation 
of thorium-normalized surface and aerial radiometric data 
to subsurface petroleum accumulations. Geophysics, 58, 1417–1427. 
https://doi.org/10.1190/1.1443357 

Silva A.B., Alves F.M. 2021. Atlas aerogeofísico do estado do Tocantins. 
Goiânia, CPRM. Available online at: https://rigeo.sgb.gov.br/handle/
doc/22566 / (accessed on 31 March 2025).

Silva G.F., Larizzatti J.H., Silva A.D.R., Lopes C.G., Klein E.L., Uchigasaki 
K. 2022a. Unsupervised drill core pseudo-log generation in raw and 
filtered data, a case study in the Rio Salitre greenstone belt, São 
Francisco Craton, Brazil. Journal of Geochemical Exploration, 232, 
106885. https://doi.org/10.1016/j.gexplo.2021.106885

Silva G.F., Silva A.M., Toledo C.L.B., Chemale Junior F., Klein E.L. 
2022b. Predicting mineralization and targeting exploration criteria 
based on machine-learning in the Serra de Jacobina quartz-pebble-
metaconglomerate Au-(U) deposits, São Francisco Craton, Brazil. 
Journal of South American Earth Sciences, 116, 103815. https://doi.
org/10.1016/j.jsames.2022.103815

Silva G.F., Graça M.C. 2018. Gamma-ray attenuation caused by rainforest 
dispersion compared to Vegetation Index: estimates on the effects 
in airborne gamma-spectrometry data – example from the State 
of Rondônia, Amazonia, Brazil. Jounal of Geological Survey of Brazil, 
1(1), 1–9. https://doi.org/10.29396/jgsb.2018.v1.n1.1 

Teixeira L.M. 2002. Minerais portadores de elementos terras raras 
em granitos das subprovíncias Tocantins e Paranã-província 
estanífera de Goiás. PhD Thesis, Universidade de Brasília.

Teixeira L.M., Botelho N.F. 2006. Comportamento geoquímico de Etr 
durante evolução magmática e alteração hidrotermal de granitos: 
exemplos da província estanífera de Goiás. Revista Brasileira 
de Geociências, 36(4), 679–691. Availabe online at: https://ppegeo.igc.
usp.br/portal/wp-content/uploads/tainacan-items/15906/46547/9310-
11010-1-SM.pdf / (accessed on 31 March 2025).

Torppa J., Nykänen V., Molnár F. 2019. Unsupervised clustering and empirical 
fuzzy memberships for mineral prospectivity modelling. Ore Geology 
Reviews, 107, 58–71. https://doi.org/10.1016/j.oregeorev.2019.02.007 

Vesanto J., Alhoniemi E. 2000. Clustering of the self-organizing map. 
IEEE Transactions on Neural Networks, 11(3), 586–600. https://doi.
org/10.1109/72.846731

Vieira C.C., Botelho N.F., Garnier J. 2019. Geochemical and mineralogical 
characteristics of REEY occurrences in the Mocambo Granitic Massif 
tin-bearing A-type granite, central Brazil, and its potential for ion-
adsorption-type REEY mineralization. Ore Geology Reviews, 105, 
467–486. https://doi.org/10.1016/j.oregeorev.2019.01.007

Zapata A.M., Botelho N.F. 2018. Mineralogical and geochemical 
characterization of rare-earth occurrences in the Serra do Mendes 
massif, Goiás, Brazil. Journal of Geochemical Exploration, 188, 398–
412. https://doi.org/10.1016/j.gexplo.2018.02.005

https://doi.org/10.1016/S0925-2312(98)00030-7
https://doi.org/10.1190/geo2017-0590.1
https://doi.org/10.1007/s11053-023-10216-1
https://doi.org/10.3389/esss.2024.10109
https://doi.org/10.3389/esss.2024.10109
https://doi.org/10.1016/j.gsf.2023.101620
https://doi.org/10.1016/j.gsf.2023.101620
https://repositorio.ufpa.br/jspui/handle/2011/14907
https://doi.org/10.25249/0375-7536.1986119131
https://doi.org/10.25249/0375-7536.1986119131
https://doi.org/10.1016/j.asr.2024.09.013
https://doi.org/10.1016/j.asr.2024.09.013
https://doi.org/10.5194/essd-15-2465-2023
https://doi.org/10.1007/s11053-024-10369-7
https://doi.org/10.1016/0301-9268(91)90086-P
https://doi.org/10.25560/78794
https://doi.org/10.1016/j.oregeorev.2020.103611
https://doi.org/10.1016/j.oregeorev.2020.103611
https://doi.org/10.11606/D.44.1983.tde-11092015-121945
https://doi.org/10.11606/D.44.1983.tde-11092015-121945
https://doi.org/10.1016/j.oregeorev.2015.01.001
https://doi.org/10.1016/j.oregeorev.2015.01.001
https://doi.org/10.1016/j.oregeorev.2022.104751
https://doi.org/10.1016/j.oregeorev.2022.104751
https://doi.org/10.1016/j.gexplo.2015.03.007
https://doi.org/10.1190/1.1443357
https://doi.org/10.1190/1.1443357
https://rigeo.sgb.gov.br/handle/doc/22566
https://rigeo.sgb.gov.br/handle/doc/22566
https://doi.org/10.1016/j.gexplo.2021.106885
https://doi.org/10.1016/j.jsames.2022.103815
https://doi.org/10.1016/j.jsames.2022.103815
https://doi.org/10.29396/jgsb.2018.v1.n1.1
https://ppegeo.igc.usp.br/portal/wp-content/uploads/tainacan-items/15906/46547/9310-11010-1-SM.pdf
https://ppegeo.igc.usp.br/portal/wp-content/uploads/tainacan-items/15906/46547/9310-11010-1-SM.pdf
https://ppegeo.igc.usp.br/portal/wp-content/uploads/tainacan-items/15906/46547/9310-11010-1-SM.pdf
https://doi.org/10.1016/j.oregeorev.2019.02.007
https://doi.org/10.1109/72.846731
https://doi.org/10.1109/72.846731
https://doi.org/10.1016/j.oregeorev.2019.01.007
https://doi.org/10.1016/j.gexplo.2018.02.005

	Unveiling geological complexity in the Serra Dourada Granite using selforganizingmaps and hierarchical clustering: Insights for REE prospectingin the Goiás Tin Province, Brasília Belt, Central Brazil
	Abstract
	1 - Introduction
	2 - Geological Settings
	2.1 - Goiás Tin Province
	2.2 - Geochronology and Geological Evolution
	2.3 - Tin and Rare Earth Mineralization

	3 - Materials and Methods
	3.1 - Data Source
	3.2 - Data preparation and dimensionality reduction
	3.3 - Data segmentation

	4 - Results and Discussions
	4.1 - Dimensionality reduction
	4.2 - SOM model
	4.3 - Data segmentation
	4.4 - Cluster Interpretation
	4.5 - Comparison with PCA

	5 - Conclusions
	Acknowledgments
	Data availability
	Authorship credits
	References



